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ABSTRACT 

Effective management of civil structures requires both data and a physical means to 

mitigate the negative consequences of the effects of extreme loading events.  This thesis 

presents a smart structure framework characterized by low-cost wireless nodes with 

collocated sensing, computing, and actuation capabilities.  These nodes are intended to 

function as an automated first line of defense during extreme loading events, providing 

both rapid assessment of structural condition (i.e., health) and automated response (i.e., 

control).  Low-cost wireless sensing and actuation nodes promote dense instrumentations 

that can provide great insight into the dynamic behavior and condition of structures.  

However, wireless networks should not be viewed merely as one-to-one replacements for 

traditional tethered systems.  Rather, the goal of this thesis is to demonstrate the 

embedment of computationally expedient approaches for traditional smart structure tasks 

(i.e., load estimation, structural health monitoring, and structural control) implemented 

within wireless sensor and actuation networks.  The distributed nature of these computing 

resources, coupled with limitations on power and communication bandwidth, require 

unique decentralized data processing algorithms that can operate effectively within the 

decentralized wireless smart structure environment.  To accomplish this goal, this thesis 

first presents the development and validation of a novel wireless sensing and actuation 

platform necessary to meet the specific requirements of this thesis work.  Then, using this 

wireless system, a method for estimating wind loading from measured wind turbine tower 



xx 
 

response is experimentally validated.  This method can generate reference loading data 

that may be used to improve the design economy of future turbines.  In addition, a 

wireless structural health monitoring method based on a physical parameterization of 

time-series model coefficients is presented for damage detection in post-earthquake 

scenarios.  This method employs a physics-based method of evaluating and integrating 

damage indications derived from individual sensors within the network.  Finally, a 

partially-decentralized method for wireless structural control is presented in which the 

wireless network dynamically trades bandwidth for performance of actuators engaged in 

feedback control.  This method provides a means to allocate scarce bandwidth resources 

while still allowing the wireless controllers to improve performance by identifying and 

broadcasting only the most valuable feedback data over the network. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Motivation of Thesis Work 

Civil infrastructure assets form the basis of the modern economy.  Structures such as 

buildings, roads, bridges, dams, and levees are vital for manufacturing, transportation, 

trade, and most importantly, for maintaining the high quality-of-life standards in 

technologically developed societies.  Failure of one or more of these infrastructure 

systems can lead to large economic losses and even fatalities.  Therefore, careful 

management of these infrastructure assets is vitally important, especially when 

considering the fact that these structures are subject to deterioration and damage due to 

aging and extreme loading events (e.g., earthquakes, hurricanes, typhoons, etc.). 

 

1.1.1. Deterioration 

Deterioration is a major challenge for the management of civil engineering structures.  

Corrosion of bridges, for example, is a multi-billion dollar per year problem (Chong 
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2004) that, if left unchecked, can lead to catastrophic loss of structural integrity (LeRose 

2001).   In addition, bridges are subject to fatigue damage (Sobanjo, et al. 1994; Zhao and 

Haldar 1996), deterioration of concrete (structure and decking) (ACI Committee 345 

2006), freeze-thaw induced damage (Enright and Frangopol 1998), and the effects of 

scour at supports submerged in waterways (Kattell and Eriksson 1998).  Similarly, 

buildings are also subject to the detrimental effects of aging and the environment.  A 

recent inventory of this nation’s civil infrastructure initiated by the American Society of 

Civil Engineers (ASCE) found that over 72,000 bridges in this country are officially 

classified as “structurally deficient” and 89,000 bridges to be “functionally obsolete” 

based on estimates of their present condition (ASCE 2009).  While the number of 

structurally deficient bridges has been shrinking in recent years due to rehabilitation 

efforts, ASCE still estimates that it will cost approximately $48 billion to rehabilitate 

fully every bridge currently in this category (ASCE 2009).  In the meantime, many of 

these bridges must be closed or operated at reduced capacity (speed or weight) due to 

suspected structural deficiency (ASCE 2009).  Classification of bridges relies primarily 

on visual inspection, a time-consuming and subjective process that is limited by the skill 

of the inspector as well as the level of access that the inspector has (usually limited to 

surface features).  Correlation of visually obtained conditional data to structural 

performance is a major challenge and can lead to overly conservative management 

approaches.  In addition, the high cost of inspection saps funds from the pool of money 

available for infrastructure management that might otherwise go to rehabilitation or 

replacement of structurally deficient or functionally obsolete structures. 
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1.1.2. Exposure to Extreme Loading Events 

In addition to long-term deterioration, civil structures are subject to extreme loading 

events such as earthquakes, hurricanes, collisions, and blast loads.  In 1994, fifty-seven 

deaths were directly attributed to the Northridge earthquake that occurred in southern 

California (Chen and Scawthorn 2003).  The earthquake was responsible for $30 billion 

in damage including 34,600 lost job-years in the immediate impact zone (valued at about 

$3.1 billion) and 11,450 more lost job-years ($1.0 billion) outside the region (Cho, et al. 

2002).  Also included in the damages were a large number of steel moment connections 

that failed despite the fact the magnitude of the Northridge earthquake was below the 

design level earthquake for that region (Feld and Carper 1997).  These failed connections 

were hidden behind cladding, insulation, and fire protection and went unnoticed for 

months following the earthquake event (Feld and Carper 1997).  In these cases, the 

resources available for immediate repairs of the damaged structures were not made 

available because the damage was not detected in a timely fashion (Mahin 1998).  

Buildings were left occupied and unprotected despite significant damage to their main 

lateral load resisting systems.   In the aftermath of extreme loading events, scarcity of 

knowledge and scarcity of response resources present a significant hazard to public 

safety. 

 

1.1.3. Unknown Loads 

While characterization of the effects of extreme loading events is important, 

characterizing the loads themselves is another challenge facing the civil engineering 
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community.  The proper determination of design loads is vital to avoid overly 

conservative or unconservative designs.  In cases such as earthquakes, dense 

instrumentation of the ground in seismically active regions helps researchers to build a 

statistical profile of the size and types of earthquakes endemic to the instrumented region.  

Those statistics can be used to generate design loads for structures based on expected 

earthquake ground motions and the dynamic characteristics of the structure.  For other 

types of sites and structures, design loads may not be so easily defined.  One application 

where this is especially true is in wind energy farms (Butterfield, et al. 2009).  The 

current code requirements for wind loading are based on regionally defined basic wind 

speeds, converted to a pressure to be applied to the structure.  Anticipated pressures are 

modified by factors to account for exposure, terrain, height, and directionality (ASCE 

2005).  While these factors work well for many building applications, turbines in wind 

energy farms experience complex and unique loadings due to both their distinctive 

geometries as well as the vortices created by upwind turbines (Hau 2006; Butterfield, et 

al. 2009).  Furthermore, current trends to construct wind farms off-shore mean that these 

structures will be exposed to more complicated loading from wind and wave interactions, 

a phenomenon that is currently poorly characterized and not fully understood (Camp, et 

al. 2003).  Lack of understanding of complex wind and wave interactions often leads to 

conservative designs that adversely affect the economic competitiveness of this form of 

sustainable energy (Henderson and Zaaijer 2003).  As these structures are constructed, 

measurement and analysis of the response to these loads are important, not only to 

monitor the condition of the structures, but to build a database that can form the basis for 
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future design load determination.  As such, extracting the loading information from the 

recorded structural response data is a key challenge. 

This thesis will explore how emerging smart structure technology can help to 

overcome the aforementioned challenges.  Smart structure technology entails the 

application of sensors, actuators, and computing devices to automate the process of 

monitoring and controlling civil infrastructure systems.  This thesis will focus on some of 

the technological and economic hurdles that stand in the way to implementing smart 

structure solutions.  Specifically, the thesis will demonstrate how the application of 

wireless technology can significantly overcome these hurdles.  Wireless devices and 

algorithms for monitoring, feature extraction, and automated response are presented and 

validated both in the laboratory and in the field. 

 

1.2. Smart Structures and Civil Engineering 

Given the threats facing society’s infrastructure assets, there is a demonstrated need 

for structures with the ability to sense external stimuli as well as the structural response to 

that stimuli.  Further value still may be gained from structures that can respond 

autonomously to extreme loads so as to lessen their vulnerability to damage.  Such 

structures, termed “smart structures,” can serve at the front lines of defense against the 

effects of extreme natural events, protecting themselves and their occupants (Brownjohn 

2007; Farrar and Lieven 2007).  The field of smart structural technology has emerged in 

recent years to address concerns about long-term structural safety and reliability as well 

as to introduce additional functionality into structural systems.  The term, “smart,” is used 
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to delineate between structures that exist solely to span a distance and support some load 

from those structures that incorporate additional sensing, actuation, and computational 

abilities.  While numerous definitions of what it means for a structure to be a “smart 

structure” exist (Gandhi and Thompson 1992; Adeli and Saleh 1999; Janocha 1999; 

Chopra 2002; Cheng, et al. 2008), consensus is forming around some salient 

characteristics (Zhang and Lu 2008).  These characteristics include integrated sensing 

technologies, information processing, control systems, and actuators that can operate 

synergistically so as to allow the structure to have a sense of the external stimulus it 

experiences and to react appropriately and adaptively (Zhang and Lu 2008).   

Smart structure technologies were initially developed for mechanical and aerospace 

engineering applications (Chopra 2002) but multiple applications within the civil 

engineering community have been found as well (Aizawa, et al. 1997; Yi and Dyke 2000; 

Cheng, et al. 2008).  Technology for sensing civil structures has been developed using a 

wide variety of approaches (Doebling, et al. 1998; Sohn, et al. 2003; Brownjohn 2007) 

including piezoelectric transducers (PZT), optical sensors, micro-electrical mechanical 

systems (MEMS)-based sensors (often combined with wireless sensing technologies), 

and even self-sensing civil engineering materials, A non-exhaustive review of the 

development and application of these technologies is presented in Table 1.1.  While 

structural monitoring systems can measure the effects of external stimuli, if such systems 

are provided with embedded computational capabilities, they will also be able to 

interrogate response data and extract damage sensitive features (Farrar and Worden 2007) 

that can be used to assess structural health.  However, current sensor technology, 
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Table 1.1. Sensing technologies developed for civil smart structures. 
Piezoelectric Transducers  
Lamb-wave damage detection (Kessler, et al. 2002) 
PZT impedance based methods for SHM (Park, et al. 1999) 
PZT impedance based methods for SHM (Park, et al. 2000) 
PZT SHM reinforced concrete bridge application (Soh, et al. 2000) 
PZT impedance sensing for concrete bridge application 
during destructive load test (Bhalla and Soh 2004) 

PZT impedance based methods for SHM (Park, et al. 2007) 

Review of guided-wave methods (Raghavan and Cesnik 
2007) 

Optical Sensors  
Application of fiber-optic sensor technologies for civil 
SHM (Culshaw, et al. 1996) 

Field validation on bridge structure (Mufti, et al. 1997) 
Measurement of dynamic loads (Inaudi 2004) 
Highway bridge load assessment (Moyo, et al. 2004) 
Bragg-grating based sensors for SHM (Todd, et al. 2007) 
MEMS Devices  
Application to civil systems (Kiremidjian, et al. 1997)
MEMS accelerometer for civil wireless sensing (Lynch, et al. 2003a) 
Bridge monitoring using MEMS based wireless sensing (Lynch, et al. 2006) 
Large-scale bridge instrumentation (Kim, et al. 2007) 
Wireless Sensing Technologies  
Identified difficulties in application of wireless sensors 
as one-to-one replacements to tethered systems in terms 
of power consumption and bandwidth utilization 

(Straser and Kiremidjian 
1998) 

Development of a wireless sensor node of SHM (Lynch, et al. 2001) 
Application of embedded algorithms in wireless network (Lynch, et al. 2003c) 
Field validation of wireless sensors on bridge structure (Lynch, et al. 2003b) 
Review of wireless “smart” sensors (Spencer, et al. 2004) 
Summary review of wireless structural health 
monitoring (Lynch and Loh 2006) 

PZT impedance based wireless sensor (Mascarenas, et al. 2007) 
Wireless PZT pitch-catch method based sensing with 
energy harvesting abilities (Musiani, et al. 2007) 

Decentralized wireless flexibility method analysis (Gao and Spencer 2008) 
Large scale bridge instrumentation using wireless 
sensors and multi-hopping of data (Pakzad, et al. 2008) 

Self-Sensing Civil Materials  
Piezoelectric effect of hardened cement paste (Sun, et al. 2004) 
Conductivity-based strain and damage detection in 
cementitious composites  (Lynch and Hou 2005) 

Electrical impedance tomography of cementitious 
composites (Hou and Lynch 2009) 
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regardless of computing power provision, remains passive and sensors themselves cannot 

react to prevent damage.   

To accomplish this final task, actuation capabilities are required.  Structural control 

applications for civil systems are not new (Yao 1972; Soong 1990; Housner, et al. 1997; 

Spencer and Nagarajaiah 2003) and provide the means by which structures can respond 

to stimuli for mitigation of the effects of undesirable loadings (e.g., seismic, wind, or 

blast).  Smart structural control applications have included base isolation systems 

(Nagarajaiah and Narasimhan 2006), variable stiffness systems (Nagarajaiah and Mate 

1998), and damping systems using adaptive materials (Dyke, et al. 1998; Symans and 

Constantinou 1999; Song, et al. 2004; Song, et al. 2006).  A more exhaustive literature 

review for structural control may be found in Chapter 6 of this thesis.  These systems 

require the coordination of sensors, controllers, and actuators within the structure; see 

Figure 1.1 [adapted loosely from Brei (2007)].   

It has been demonstrated that generic, one size fits all sensing and control systems are 

not well suited for smart structure applications in the civil engineering domain (Farrar, et 

al. 2006).  Instead, what is needed are systems designed to meet the specific needs of the 

structure in which they will be installed.  In addition, it is desirous to employ high sensor 

densities in monitoring applications to achieve statistically relevant and redundant 

monitoring results (Jia, et al. 2009).  Unfortunately, the complexity and vast size  of civil 

structures necessitate large numbers of sensors to realize this high level of sensor density.  

An additional benefit of high density, in both sensors and actuators, is  an increase in the 

long-term overall system reliability (due to the avoidance of single points of failure).  As 

will be seen in the next section, these needs introduce additional costs to the system, 
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which indirectly place a barrier to widespread commercial implementation.  A wireless 

sensor design can reduce implementation costs which would increase the adoption of 

smart structure technologies in industry. 

 

1.3. Wireless Smart Structure Technology 

A key barrier to widespread adoption of smart structure technology in the civil 

engineering realm is the continual pressure to reduce system costs while increasing 

quantifiable benefits.  Due, in part, to their relative novelty, smart structure technology 

tends to be somewhat costly (Gandhi and Thompson 1992).  Because computing 

 

Figure 1.1. Interaction of the various aspects of smart structure technologies: 
structure, actuation, sensing, and computing [adapted from Brei (2007)]. 
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resources are required to take full advantage of these strategically placed sensing and 

actuation devices, it is necessary to connect these devices to a computer.  Due to the 

relative size of civil structures and the inaccessibility of many portions of the structure, 

the installation of signal cables between devices and a centralized computing center can 

be prohibitively expensive, often costing thousands of dollars per channel (Celebi 2002).  

Signal cables are also subject to damage and analog domain noise corruption which can 

impair the operation (and effectiveness) of the smart structure system. 

Wireless sensor technology can alleviate the aforementioned cabling costs, linking 

sensors and actuators to computing resources at a significantly reduced cost, to the order 

of one hundred dollars per sensing channel.  By reducing the per channel cost, wirelessly-

enabled sensors and actuators enable implementation of dense networks of smart 

structure devices at a competitive cost.  In addition, wireless devices represent a 

paradigm shift in smart structure technology for civil systems.  Instead of viewing 

sensors, actuators, and computers as distinct, and often physically separated entities, 

wireless sensors are integrated systems that incorporate transducers (sensors and 

actuators), signal conditioning, computer memory, and data processing within a single 

package.  The collocation of computing with sensors is a significant advancement 

because it allows automated data processing to occur at the sensor leading to early 

warning in the instance of structural problems (e.g., damage).  Fundamentally, automated 

data processing also avoids the accumulation of large quantities of unprocessed data, a 

phenomenon that plagues structural monitoring systems that lack any form of 

autonomous data processing. 
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Successful field deployments in actual civil structures over the past five years have 

demonstrated the feasibility and value of the technology (Lynch, et al. 2003b; Kurata, et 

al. 2005; Lynch, et al. 2006; Whelan, et al. 2007; Pakzad, et al. 2008).  Research 

continues to advance wireless sensing with distributed computing within the wireless 

sensing network now emerging as a new usage strategy for the technology.  Sensor-

centric computing, in which wireless sensors process their own measurement data, has 

been illustrated for modal analysis (Lynch, et al. 2004) and damage detection (Tanner, et 

al. 2002; Clayton, et al. 2005; Hou, et al. 2005).  More recently, network-wide 

computing architectures have also been proposed for mode shape estimation of civil 

structures (Zimmerman, et al. 2008).  Wireless sensors with the ability to affect their 

surroundings are also suitable for “active” sensing applications (Chintalapudi, et al. 

2005) thereby eliminating reliance on ambient vibrations for excitation.  Once actuation 

is integrated into the design of a wireless sensor, it becomes possible for wireless sensors 

to perform feedback control functions as well.  In this study, a wireless sensor capable of 

commanding structural actuators is proposed. 

Wireless sensors however, do present their own set of unique challenges that must be 

addressed.  Principally, challenges include: 1) the physical limitations to the amount of 

data that may be transmitted over a communications channel; 2) communication distance 

limitations (or the effect of barriers to radio frequency (RF) wave propagation); and 3) 

energy limitations based on the fact that many of these devices are powered by battery 

packs.  These challenges affect the prospects for both system scalability and economy.  

For example, scarce bandwidth resources can be quickly saturated by transmission of raw 

data as the number of sensors in the network increases.  One approach frequently 



12 
 

employed for overcoming communication distance restrictions in wireless sensor 

networks is the use of multi-hopping, the practice of relaying data from node to node 

within a network to cover long distances (Broch, et al. 1998; Kurata, et al. 2003; 

Nagayama 2007).  This practice is very effective in overcoming communication range 

restrictions in wireless sensor networks, but it does have a negative effect on bandwidth 

utilization by the network reducing the quantity of data that may be transmitted in a fixed 

period of time (Callaway 2003).  Multitier wireless networks (consisting of low-power 

data nodes collecting data and transmitting it to high-power collector nodes with greater 

throughput and range) can also address range issues (Kottapalli, et al. 2003) without 

significant bandwidth degradation (different tiers within the network can be allocated to 

separate communication channels), but still may be unable to penetrate physical barriers 

to microwave signals (Elliott 2003).  Finally, the cost savings realized by the elimination 

of cables from the system will be negated if overly frequent system maintenance is 

required to replace batteries.  An important advance in enhancing the practicality of long-

term deployment of wireless sensing technology is the application of energy harvesting 

techniques by which wireless sensors generate power for themselves from locally 

ambient energy sources (Sodano, et al. 2004; Sodano, et al. 2005; Musiani, et al. 2007).  

However, energy harvesting applications are limited by the amount of energy available in 

the environment, as well as the mechanism by which that energy is captured and stored 

(Scruggs 2009).  Due to that limitation, preservation of energy within wireless sensing 

networks is still an important concern. 

Two strategies will be employed throughout different phases of this thesis to 

overcome or alleviate the challenges associated with wireless sensing: 1) embedded data 
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processing; and 2) use of hybrid wired/wireless networks.  The most important strategy is 

the use of embedded data processing.  By processing data locally within the sensing node, 

the need to transmit vast amounts of raw data may be eliminated, thereby saving 

bandwidth and energy (due to the fact that data processing is more energy efficient than 

transmission) (Straser and Kiremidjian 1998; Lynch and Loh 2006).  This practice also 

preserves system scalability and attempts to prevent accumulation of unexamined data.  

The second strategy is to use a hybrid network consisting of wired and wireless sensors 

where distance and physical barriers impede the reliability of wireless communications.  

In a hybrid monitoring system, a relatively small number of wired sensing nodes collects 

data (raw or processed) from many distributed wireless nodes.  The wired backbone of 

the hybrid system can move higher rates of data and is able penetrate radio-frequency 

(RF) barriers while allowing for efficient centralization of data from a large number of 

channels.  The wireless system developed for this thesis will be designed to employ these 

strategies in order to meet all of the requirements for a smart structure system. 

 

1.4. Development of the Narada Wireless Sensing and Actuation Node 

At the core of this thesis is the development of a wireless sensing/actuation node 

specifically tailored to meet the demands of the smart structure application ontology.  

Creation of the Narada wireless sensing and actuation node (see Figure 1.2) required a 

hardware and firmware design that enhances its functionality in smart civil structure 

applications.  Hardware design encompasses the selection of electrical components and 

the layout of a printed circuit board (PCB), which together constitute the physical node.  
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The firmware (i.e., embedded software) development, which was required to produce a 

working prototype, includes an embedded operating system (OS) as well as engineering 

algorithms that interrogate data collected.  The OS is composed of low-level device 

drivers that allow individual hardware components to work together, medium access 

control (MAC) definitions that define how the sensor is allowed to access the wireless 

communications channel, communications protocols that define how the sensors transmit 

information among themselves and with users, and a state-machine that governs which 

actions are allowable at which times.  These firmware components form the basis for 

automation of the sensor’s operation.   

Firmware enables a host of embedded algorithms that form the basis of smart wireless 

sensing and control technology.  Development of these algorithms followed a natural 

flow from basic algorithms to increasingly complex smart structure applications, as 

shown in Figure 1.3.  Basic data processing algorithms for system identification (e.g., 

 

Figure 1.2. Narada wireless sensing and actuation node. 
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auto-regressive time-series modeling, modal analysis, model parameter extraction, and 

state estimation) enable complex model-based structural health monitoring applications 

when combined with statistical pattern recognition algorithms.  Increasing the level of 

complexity, the addition of real-time wireless structural control applications to the 

Narada toolbox make it a fully-active smart structure system capable of controlling 

physical systems (in this study, civil structures). 

 

  

 

Figure 1.3. Schematic depicting the developmental flow of the Narada system. 
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1.5. Organization of the Thesis 

This thesis is organized as follows (also see Figure 1.4).  Chapter Two: Development 

of the Narada Wireless Sensing and Actuation Unit presents a detailed description of the 

design of the Narada wireless sensor including a review of precursor wireless sensing 

units from both industry and academics.  In addition, the design considerations that make 

Narada ideally suited for civil engineering smart structure applications will be presented.  

Narada is designed as a sensing, computing, and actuation platform that serves as a 

building block for wireless smart structure systems.  The sensing interface allows for the 

deployment of up to four transducers per node allowing a structure with Narada nodes to 

collect and process a heterogeneous set of data regarding its state and condition.  The 

actuation interface accommodates command lines for the operation of up to two actuators 

thereby allowing structures instrumented with Narada nodes to respond to external 

stimuli.  In addition to hardware, Chapter Two also presents the development of the 

embedded software (termed firmware) that operates the Narada unit.  Chapter Two 

presents some basic data collection and transmission algorithms embedded in Narada; 

higher-level embedded processing algorithms for load estimation, health assessment, and 

structural control are presented in subsequent chapters.  The embedded engineering 

algorithms that process and analyze data constitute the bulk of the intellectual 

contributions that this thesis makes to the field. 

Since its inception, the Narada wireless sensing and actuation node has been 

extensively field tested.  Chapter Three: Field Validation of Narada: Hybrid Wireless 

Hull Monitoring of Naval Combat Vessels presents an in-depth field deployment case 

study in which the Narada wireless units are used for structural monitoring.  This case 
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study provides a demonstration of an operational network of Narada wireless sensors as 

they collect data in an unsupervised manner for an extended period of time aboard a high-

speed, U.S. Navy littoral combat vessel.  In this case study, a hybrid wireless/wired 

monitoring network is employed to take advantage of the ease by which wireless sensors 

aggregate data from transducers installed within individual compartments of the ship and 

 

Figure 1.4. Thesis outline. 
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the high data throughput and bulkhead piercing ability of the wired portion of the 

network.  Data collected from the wireless system are verified against data collected from 

a traditional tethered monitoring system also installed in the ship. 

In Chapter Four: Structural Monitoring and Load Estimation of Wind Turbines 

Using Wireless Sensor Networks the first true embedded data processing algorithm is 

presented in which a model-assisted load estimation method for wind turbine applications 

is embedded within the Narada wireless sensor.  The characterization of wind loads 

imposed on wind turbines (structure and components) is still an open problem, 

particularly in large wind farm arrays and off-shore applications.  Wireless sensors can be 

economically deployed to collect structural response data from turbines in the field; the 

challenge lies in extracting loading information from the response of the turbine where 

the turbine dynamic model is either not characterized or changes over time.  In Chapter 

Four, an embedded algorithm performs an online update of a turbine tower model; then 

the updated model is used to estimate the loading spectra extracted from measured 

response data.  The loading data extracted can be used to estimate the fatigue life 

remaining for the turbine or to improve the design of future turbine installations (topics 

that are beyond the scope of this thesis).  This chapter includes a laboratory validation 

component as well as results of a field instrumentation campaign in which structural 

response data from operational wind turbines are collected and analyzed using the 

Narada wireless sensor. 

In Chapter Five: Wireless Structural Health Monitoring Using Migration of System 

Pole Locations, a damage detection algorithm is presented to run on the distributed 

computing network represented by a monitoring system consisting of Narada wireless 
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sensors.  Because data, memory, and computational power are distributed throughout the 

network, the damage detection algorithm relies primarily on sensor-level data and sensor-

level processing to identify changes in the dynamic behavior of the structure that could 

indicate damage.  By processing data, at the sensor level, the algorithm avoids 

transmission of large tracks of raw data thereby preserving battery energy and system 

scalability (the transmission of raw data over increasing numbers of data channels 

quickly erodes the available bandwidth of the communications channel).  Single-input, 

single-output (SISO) time-series models (either output-only or input/output) are 

recursively fit to collected data at the sensor level.  System poles are then extracted from 

the time-series models, and their complex values (corresponding to frequency and 

damping) are correlated to damage.  The damage estimates made independently at all of 

the sensors in the network are then integrated by means of weighted averaging.  Weights 

are based on the estimated signal quality as indicated by that sensor’s contribution to the 

observability grammian in modal coordinates.  Chapter Five presents the method in detail 

and demonstrates results based on changes in stiffness of a box-girder concrete bridge 

and a six-story steel building. 

With its native actuation interface, the Narada wireless sensor can also provide smart 

civil structures with reactive capabilities.  A wireless structural control method for 

seismic disturbance rejection is presented in Chapter Six: Strategic Network Utilization 

in a Wireless Structural Control System for Seismically Excited Structures.  In this 

chapter, a novel decentralized feedback control method is presented by which wireless 

bandwidth is traded for controller performance (Yook, et al. 2002).  Wireless sensors 

measure story responses, compute the entire state response of the structure, compute 
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control forces, and actuate collocated semi-active dampers.  Each sensor employs a 

redundant Kalman estimator; the performance of the controller is then linked to the 

quality of the state estimates generated by the local estimators.  Sensors are continually 

comparing their measured data to local estimates.  When the error exceeds a predefined 

threshold, the unit broadcasts the measured value to the entire network to use in the 

calculation of control forces.  By varying the broadcast threshold, the utilization of the 

shared wireless communication channel and performance of the control system may be 

varied.  Chapter Six presents the method in detail and investigates the effects of varying 

this threshold as applied to the same six-story building presented in Chapter 5, except 

that the structure is now controlled by magneto-rheological (MR) dampers. 

Finally, Chapter Seven: Conclusions and Future Directions, presents final comments 

on the achievements and relevance of this thesis work, its suitability for implementation 

and commercialization, and a discussion of the future work that can be built upon these 

studies.  Also included in Chapter Seven is a broader discussion of where the field of 

wireless sensing for smart civil structures appears to be heading in future years and 

beyond. 
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CHAPTER 2 

 

DEVELOPMENT OF THE NARADA WIRELESS SENSING AND 

ACTUATION UNIT 

 

This chapter presents the development of the Narada1 wireless sensing unit that has 

been designed as a low-cost alternative to cable-based monitoring systems in civil 

infrastructure applications.  The Narada wireless sensor has been developed with 

embedded processing and low-power operation in mind.  Initially, wireless sensors were 

proposed as a one-to-one replacement for tethered sensors (Straser and Kiremidjian 

1998).  However, by taking advantage of the inherent distributed processing power 

contained within a network of wireless sensing nodes, data processing and structural 

health monitoring activities can be fully automated by the monitoring system.  In 

addition, a wireless system that can react in real-time to its environment is desired.  

Therefore the Narada wireless sensor is also built with an actuation interface so that it 

can participate in active networks and be used for embedded feedback control operations 

                                                 

1 The wireless sensing unit is named for the Javanese messenger of the gods, Narada, who would warn 
people of impending disaster Encyclopedia Mythica, "Narada", Encyclopedia Mythica: mythology, folklore, 
and religion  Retrieved Sept. 1, 2009, from http://www.pantheon.org/articles/n/narada.html, (1997). 
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where the wireless sensor is responsible for sensing, control force calculation, and 

command of actuators.  In this chapter, the individual challenges inherent in wireless 

sensing networks are detailed, followed by a discussion of the hardware elements 

required in the design of a wireless sensing/actuation node.  This discussion is followed 

by a summary of wireless sensing prototypes that predated or are contemporaries of the 

Narada design.  Finally, the hardware and software components of the Narada wireless 

sensor are introduced and described including the basic sensing module.  Embedded 

processing algorithms developed for feature extraction, structural health monitoring, and 

structural control are presented in later chapters (Chapters 4, 5, and 6 respectively) with 

their associated applications. 

   

2.1. Challenges in Wireless Monitoring 

Wireless sensors are low-cost alternatives to traditional wired sensors due to the 

eradication of extensive wiring needed between traditional tethered sensors.  However, 

the lack of the dedicated communication channel offered by a wired system presents 

unique challenges to the successful implementation of wireless monitoring systems in 

actual structures.  These challenges include limited on-board power supplies as well as 

bandwidth constraints inherent to the wireless communication channels that exist 

between sensing nodes.  In addition, transmission range becomes a major concern in 

spatially disperse networks, as is often the case in civil engineering structures that are 

regularly defined by dimensions of hundreds of meters.  Finally, data flow over-the-air in 

wireless networks presents an additional security concern that must be addressed.  These 
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challenges, and strategies for alleviating their effects, are presented in detail in this 

section. 

   

2.1.1. Limited Power Supplies 

In some structures, such as commercial buildings, wireless sensors can be 

conveniently operated using AC power native to the structure.  However, many civil 

structures do not have AC power outlets distributed throughout.  Therefore, without 

cables to supply power, wireless sensors are reliant on battery power to function.  For 

monitoring systems intended to operate independently in the field (perhaps for years at a 

time) power consumption is then a major concern.  The cost savings that can be obtained 

by employing wireless sensing will never justify a wireless system that requires constant 

maintenance and battery replacement.  This fact is especially true in the civil engineering 

environment where sensors may be out of reach, located behind cladding, or otherwise 

very difficult to access.  The design of a wireless sensing unit must therefore incorporate 

low power components in its design in order to preserve battery power as much as is 

possible.  However, lower power consumption often comes with reduced functionality: 

lower resolution, lower communications range, and/or reduced speed.  These are all 

tradeoffs that must be judiciously analyzed during the design of wireless sensors in order 

to reduce power consumption yet obtain adequate sensor performance for the intended 

application.  

The largest consumer of battery power in most wireless sensor hardware designs is 

the wireless radio.  Given this fact, reducing radio use is the most effective way of 

preserving battery power within a well designed wireless sensing network.  Because 
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computational operations within the sensing unit are less costly (in terms of energy drain) 

than data transmission, any on-board data processing that can reduce the amount of raw 

data transmitted wirelessly throughout the network will result in a net decrease in energy 

expended (Straser and Kiremidjian 1998; Lynch, et al. 2004b).  Besides simply 

preserving battery life, on-board data processing is advantageous in any monitoring 

system as it helps to avoid data glut, the situation where a very large collection of data is 

compiled within a repository at a rate faster than a qualified person (e.g., an engineer or 

trained technician) can manually process.  By collocating computational power at the 

sensor, data can be processed as it is collected, without the added labor and expense of 

human interaction.  

For many monitoring applications, some additional options exist to help overcome 

power supply limitations.  First is the strategic use of a wireless sensor’s sleep mode, 

where the sensor is powered down for a prolonged period of time.  Another option is to 

scavenge energy from the environment, such as capturing solar power (Shinozuka 2003; 

Chung, et al. 2004) or harvesting power from mechanical vibrations (Sodano, et al. 2004; 

Scruggs 2009).  For applications with little to no computational requirements, passive 

radio frequency identification (RFID) sensors are an additional option to consider.  RFID 

sensors do not require a collocated power source since power is received from a reader 

through electromagnetic coupling (Finkenzeller 1999).  Generally, appropriate power 

saving approaches are often application specific, and require careful thought as well as 

creativity on the part of the system designer. 
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2.1.2. Limited Bandwidth 

The majority of wireless sensing units today are designed to operate within the 

unlicensed industrial, scientific, and medical (ISM) radio band. In the United States, the 

Federal Communications Commission (FCC) has designated 900 MHz, 2.4 GHz, and 5.0 

GHz frequency bands as unlicensed ISM frequencies for general use, but limits the output 

power of devices that operate within those bands to 1 W (FCC 2004).  Many wireless 

technologies (e.g., Wi-Fi, Bluetooth, Zigbee) operate within these frequency 

requirements.  The limited number of unlicensed frequencies and the potential for 

interference from other wireless technologies using the same bands restricts the amount 

of data that can be reliably transmitted within a network during a given time period (even 

in cases where power consumption is not a concern).  Another factor to consider is that 

wireless signals may be sent either as narrow-band signals (i.e., modulated on a single 

frequency) or as a spread-spectrum signal (i.e., modulated over a range of frequencies).  

Narrow-band signals are more susceptible to environmental interference and multi-path 

distortions (Mittag 2001), however spread-spectrum signals, while more reliable (Bensky 

2004), monopolize more bandwidth and further limit the total amount of data that can be 

moved over a particular range of frequencies in a given time period. 

Multiple devices sharing common bandwidth (wired or wireless) must coordinate 

their actions to avoid collisions that would corrupt the data they transmit.  A number of 

medium access control (MAC) protocols are available for this purpose.  A MAC protocol 

defines the rules a device must follow in order to access a shared communication 

medium; in the case of wireless sensors, that medium is a wireless channel.  These rules 

are designed to avoid collisions and corruption of data, ensure proper data reception, and 
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offer uniform quality of service throughout the network (Zhao and Guibas 2004).  Two 

MAC protocols that are popular for wireless sensing applications include carrier sense 

multiple access with collision avoidance (CSMA/CA) and time division multiple access 

(TDMA).  CSMA/CA avoids collisions by enabling sensors to detect when another unit is 

utilizing the wireless channel; collisions are then avoided by having any unit detecting 

another unit’s use of the channel to back off for a random period of time before 

attempting to send its data packet.  TDMA is a more straight forward (and deterministic) 

approach by which guaranteed time slots for communication are allocated to each 

wireless sensor.  In large civil structures, the ability for multiple sensors to share a single 

medium is especially important when taking into account limitations on transmission 

range between nodes. 

   

2.1.3. Transmission Range 

As previously mentioned, the power levels of transmissions made within unlicensed 

frequency bands are limited by the FCC to 1 W.  Limiting the output power also limits 

the effective communication ranges of devices that use these bands.  In open spaces, 

wireless signals lose power in proportion to their wavelength and in inverse proportion to 

the square of their distance from the transmitter (Rappaport 2002).  Boundaries such as 

floors and walls also attenuate the wireless signal; this effect is called path loss.  In civil 

engineering structures, the size of the structure can be considerably larger than the 

effective range of low-power wireless devices.  Nodes may be able to communicate with 

neighboring nodes but not distant sensors.  A number of solutions are available to 

overcome range restrictions. First, altering the antenna can produce substantial 
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improvements.  High-gain and directional antennas can increase the effective range of 

wireless sensor nodes, but these may be expensive solutions.  High power broadcasts 

would also drain available battery power quickly.  Such solutions are ideal for star 

networks (Figure 2.1(a)) in which a single unit seeks to communicate with all other units 

in the wireless sensor network.   

 

 (a) (b) 

 

(c) 

Figure 2.1. Wireless communication topologies: (a) star network, (b) peer-to-peer, (c) 
multi-tiered networks, adapted from (Lynch and Loh 2006). 
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Where time is not critical, multi-hopping, peer-to-peer networks (Figure 2.1(b)) can 

transmit data from node to node over the entire length of the network.  However, the 

delay induced in multi-hopping, peer-to-peer networks increases rapidly as the network 

grows larger, effectively limiting its node-to-node data rate.  Assuming 100% reliable 

communication between the nodes, the total energy expended by multi-hop network will 

be less than in star topologies because lower power data transmissions are used (Zhao and 

Guibas 2004).  However, if link quality is poor and frequent re-transmission of data is 

necessary, multi-hop networks lose their advantage and can actually consume more 

power than a star network with higher-power radios.   

Finally, a multi-tier network architecture (Figure 2.1(c)) may be employed in which 

high-power, high-throughput central nodes (wired or wireless) serve as intermediaries for 

lower-power wireless sensor nodes.  The central nodes, powered from a structure’s 

electrical grid, collect data from their local sub-network and transmit aggregated data to 

other central nodes on either a second carrier frequency (Mitchell, et al. 2002) or using a 

traditional wired network. 

   

2.1.4. Security 

As owners of Wi-Fi networks are well aware, wireless networks are vulnerable to 

security threats, both passive and active.  Passive attacks come in the form of attempts to 

steal data as it is transmitted over the airwaves (Perrig, et al. 2004).  One type of active 

attack involves the transmission of malicious data into the network to negatively impact 

its performance (Karlof and Wagner 2003).  Both of these forms of attack may be 

defeated by use of an effective encryption algorithm (Karlof and Wagner 2003; Karlof, et 
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al. 2004).  Encryption increases the time and energy overhead involved in wireless 

transmissions, computation, and memory but may be necessary in critical applications 

where security is a chief concern (Perrig, et al. 2002).  The other form of active attack 

that might be perpetrated against a wireless sensing network is jamming which is the 

flooding of the communications bandwidth range with interfering signals that are 

intended to block communications (Karlof and Wagner 2003).  In such cases, unless the 

power output of the network radios can be increased dramatically, this kind of attack will 

be debilitating to a wireless network.  In applications with a reasonable possibility of 

suffering such an attack, and where communications between nodes are critical, wireless 

networks are probably not an ideal means of data acquisition.  Susceptibility to this kind 

of attack is a fundamental limitation of the wireless sensing approach. 

   

2.2. Hardware Requirements for Wireless Sensors for Structural Monitoring and Control 

The primary task of wireless sensors is to collect and transmit sensor data using a 

wireless channel.  In order for wireless sensor nodes to communicate with one another, 

digital wireless radios are readily available and will be used.  However, because the 

outputs from most sensors are analog, signals at some point must be converted into the 

digital domain in order to be transmitted using the digital radio.  To accomplish the task 

of digitization of the analog sensor data, a sensing interface must also be included in the 

design of a wireless sensor node.  Prior to sending data to the digital radio, the data must 

be packaged in a packet that is used to route the data in the wireless network.  Therefore, 

a computational core containing a microcontroller is necessary for packetizing sensor 

data prior to communication.  Hence, wireless sensors typically contain three primary 
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functional modules: sensing interface, communications interface, and computational core 

as depicted in Figure 2.2.  All of the academic and commercial wireless sensors 

previously explored for structural monitoring have been designed with these three 

modules.  This thesis will attempt to extend the functionality of the wireless sensor by 

allowing it to interact with its physical environment (or function as an “active sensor”).  

As a result, a fourth functional element is proposed: the actuation interface.  This 

interface will take digital signals originating from the microcontroller and convert them 

into analog voltage signals that can command a host of actuators (e.g., hydraulic, 

piezoelectric, and electric actuators).  The compositions and roles of each of these 

functional elements are described in this section with an emphasis on providing solutions 

to the aforementioned challenges associated with wireless structural health monitoring. 

   

2.2.1. Sensing Interface 

The sensing interface is responsible for converting analog voltage output signals from 

transducers interfaced to a wireless sensor unit into digital signals that can be processed 

 
Figure 2.2. Wireless sensing node architectural diagram. 
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by a digital processor.  Many types of transducers commonly used for monitoring of civil 

structures (e.g. linear variable differential transformers, geophones, accelerometers, etc.) 

output analog signals that are not immediately usable by digital circuitry.  Therefore, an 

analog-to-digital converter (ADC) is needed to transform these analog signals into a 

digital format.  Key considerations when selecting an ADC are resolution, maximum 

sampling frequency, allowable input voltage range, and noise characteristics.   

Resolution is especially important in civil applications because structural responses to 

ambient conditions can be quite small.  Here, high resolution is required in order to 

adequately differentiate low energy signals from electrical noise inherent to the sensor.  

Most commercially available wireless sensing units implement low resolution ADCs in 

the range of 10 to 12-bits.  Higher resolution (16-bits or higher) is more suitable for civil 

monitoring applications, particularly for ambient excitation studies where the signal level 

is quite low and important features may be difficult to distinguish from the noise floor.   

The voltage range of the ADC is also important to consider.  For example, signals 

outside of the ADC allowable input range will not be measured correctly.  Furthermore, 

using a large input range to record data from low voltage signals wastes valuable 

resolution.  As a result, the voltage range of the transducer should be properly matched to 

the input voltage range of the ADC.  Otherwise, amplification (or de-amplification) 

circuits may be necessary to add between the sensor and ADC (Wang 2007).   

In addition to voltage range, the noise characteristics of the sensing interface will 

impact the final measurement resolution that a wireless sensor can realize.  Hence, 

electrical noise outside the ADC should be kept as low as possible to preserve the ADC 

resolution.  Generally, electrical noise finds its origin in the digital circuitry that 
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surrounds the actual ADC component; therefore, careful circuit layout is mandatory when 

integrating high resolution ADCs in the wireless sensor circuit. 

Secondary considerations for the design of the sensing interface include number of 

sensing channels, power consumption, and cost.  Providing multiple sensing channels per 

node allows one node to collect data from more than one sensor resulting in amortization 

of the unit cost over more channels.  Low power consumption is vitally important for 

wireless monitoring applications.  However, low power components often come with 

performance tradeoffs in terms of speed, resolution, noise, and other factors.  For 

applications that rely solely on battery power, it is prudent to select the lowest power 

ADC meeting the minimum requirements of the intended application.  

   

2.2.2. Computational Core 

The microprocessor selected for the computational core is one of the most important 

components of the wireless sensor design.  The programming that operates the sensing 

node is contained within the computational core.  More specifically, this programming 

runs on a microcontroller.   The microcontroller is a low-power computing platform 

capable of executing complex tasks reliably and efficiently.  The microcontroller is 

responsible for operation of the peripheral devices (e.g., ADC, transceiver, etc.) on the 

sensing node, coordination of wireless communications between sensors, embedded data 

processing, and power management.  For some applications, the memory required for 

data storage or embedded processing exceeds the capacity of the microcontroller.  In 

these cases, external memory may be added for additional data storage capacity.  The 

microcontroller may also include built-in peripherals that may form the basis of the other 
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interfaces (e.g., an integrated ADC might serve as the basis for a sensing interface).   Key 

properties in selecting a microcontroller include power consumption, clock speed, 

memory, number and type of peripheral communication buses, timers, and cost. 

   

2.2.3. Communications Interface 

Sensors must communicate with the end-user of the monitoring system and, in some 

cases, with other sensors in the network for collaborative data analysis.  Communicating 

data, or the results of embedded algorithms, is accomplished by the communications 

interface.  A two-way wireless radio (i.e., transceiver) contained within this interface 

provides the primary communication link for the node.  Key parameters for wireless 

transceiver selection include transmission data rate, transmission range, power 

consumption, operational frequency band, compliance with communications standards, 

and cost. 

   

2.2.4. Actuation Interface 

For active sensing applications (e.g., ultrasonic inspection or feedback control) in 

which the wireless sensing unit must interact with its environment, a fourth interface is 

required to command actuators.  For motor based actuators, a pulse-width modulator 

(PWM) interface can supply the command signal.  The PWM interface is provided as a 

built-in peripheral of many microcontrollers, though amplification may be necessary.  

Most other actuators are commanded using analog voltage signals necessitating a digital-

to-analog converter (DAC) to bridge the gap between the microprocessor and an actuator.   

A DAC converts discrete time digital signals into continuous analog signals, generally 
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via zero-order hold outputs.   Key properties in DAC selection include resolution, output 

voltage range, power consumption, number of channels, settling time, and cost.  

Considering civil structures, it is often the case that the resolution is not as critical for the 

actuation interface as it is for the sensing interface, as civil engineering actuators are 

rarely high-precision instruments.  Output range, settling time, and power consumption 

are usually more important properties to consider for structural engineering applications.  

   

2.3. Wireless Sensing Prototypes 

Since the late 1990’s many wireless sensing unit prototypes have been developed for 

both academic and commercial applications.  With different intended applications and 

priorities in mind, wireless sensor designers have gone in a myriad of different directions 

with their developments.  Depending on the goals of the designers, node design may 

emphasize speed, transmission range, reliability of communications, security, versatility, 

sensitivity, power consumption, cost, or some combination of those factors.  Clearly, it is 

impossible to emphasize all of these objectives in a single, generic design.  Furthermore, 

the best sensing unit design for one application is not necessarily the best design for 

another.  With that fact in mind, Tables 2.1 through 2.4, adapted from tables compiled by 

Lynch and Loh (2006), present published specifications of wireless sensors developed in 

academia, as well as industry, that illustrate the development of wireless sensing units 

from 1998 to 2009.  Tables 2.1 and 2.2 present seventeen academic wireless sensing units 

developed since 1998 ranging from short-range, low-power mites (Mitchell, et al. 2002), 

to powerful and versatile behemoths (Allen 2004; Farrar, et al. 2005).  Table 2.3 presents 

commercial sensors while Table 2.4 presents active wireless sensing units that include 
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actuation interfaces in their design (including the Narada wireless sensor designed during 

the course of this thesis).  These tables help to put the Narada wireless sensor into the 

context of the existing wireless sensing hardware at the time of its inception and facilitate 

comparison to sensor platforms that follow.   

Narada shares many hardware attributes (and even functional components) with 

precursor and contemporary wireless sensing platforms; but it is Narada’s unique 

combination of these attributes that make it the ideal platform for performing the 

embedded sensing, processing and control tasks in the following chapters of this thesis.  

At its inception, very few wireless sensing units feature high-resolution (16-bit or greater) 

sensing interfaces; but, as of the writing of this thesis, additional systems with this ability 

have been developed (Pakzad, et al. 2008; Rice and Spencer 2008).  While many 

commercial and academic wireless sensing networks now support low-power, ad-hoc 

wireless networking (Sazonov, et al. 2004; Kling 2005; Pakzad, et al. 2008), particularly 

using wireless transceivers that conform to the IEEE 802.15.4 communication standard, 

Narada does so with a modular communication interface allowing longer communication 

ranges (over 300 m) to be achieved when installed on larger civil structures.   

Most critically, in reactive structures, the ability to command actuators is a necessary 

component that is embedded directly with the Narada wireless sensing and actuation 

node.  Sensor units configured for impedance interrogation of structures equipped with 

piezoelectric transducers are included in Table 2.4 as “active” sensors; they are only 

active in the sense that they provide their own local excitation.  Their actuation interface 

is not configured to directly command typical analog actuators meaning that these 

systems  are  primarily  effective  for  sensing  alone.   Active  sensing  units,  such as that  
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Table 2.1. Academic prototype wireless sensors: 1998-2003. 
 Straser 

and 
Kiremid-

jian 
(1998) 

Bennett, 
et al. 

(1999) 

Lynch, 
et al. 

(2001; 
2002a; 
2002b) 

Mitchell, 
et al. 

(2002) 

Kottapalli, 
et al. 

(2003) 

Lynch, 
et al. 

(2003a; 
2004a) 

Aoki, 
et al. 

(2003) 

Wang et 
al. (2003) 
Gu et al. 
(2006) 

Data Acquisition Module 
ADC 
Channels 8 4 1  5 1  8 

Sample 
Rate 240 Hz  100 kHz 20 MHz 20 MHz 100 kHz  > 50 Hz 

ADC 
Resolution 16-bit 16-bit 16-bit 16-bit 8-bit 16-bit 10-bit 12-bit 

Digital 
Inputs 0  2  0 2  multiple 

Embedded Computing Capabilities 
Processor Motorola 

68HC11 
Hitachi 
H8/329 

Atmel 
AVR8515 

Cygnal 
8051 

Microchip 
PIC16F73 

Atmel 
AT90 
S8515 
AVR 

MPC555 
PowerPC 

Renesas 
H8/ 

4069F 

Analog 
Devices 
ADu- 
C832 

Bus Size 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit/32-bit 8-bit 8-bit 
Clock 
Speed 2.1 MHz 4.9 Hz 4 MHz  20 MHz 4 MHz/20 

MHz 
20 

MHz  

Program 
Memory 16 kB 32 kB 8 kB 2 kB 4 kB 8 kB/26 kB 128 kB 62 kB 

Data 
Memory 32 kB  32 kB 128 kB 192 kB 512 Kb/448 

kB 2 MB 2 kB 

Wireless Communications Specifications 
Radio Proxim 

ProxLink 
Radio-
metrix 

Proxim 
RangeLan

2 

Ericsson 
Bluetooth 

BlueChip 
RBF915 

Proxim 
RangeLan2 

Realtek 
RTL-

8019AS 

Linx 
Techno-
logies 

Frequency 
Band 

900 
MHz 

418 
MHz 2.4 GHz 2.4 GHz 900 MHz 2.4 GHz  916 MHz 

Wireless 
Standard    IEEE 

802.15.1     

Spread 
Spectrum Yes  Yes Yes Yes Yes  No 

Outdoor 
Range 300 m 300 m 300 m 10 m 500 m 300 m 50 m 152 m 

Indoor 
Range 150 m  150 m 10 m 200 m 150 m 50 m 61 m 

Data Rate 19.2 
kbps 40 kbps 1.6 Mbps  10 kbps 1.6 Mbps  33.6 kbps 

Assembled Unit Attributes 

Dimensions 15x13x 
10 cm 

15x15x 
30 cm 

10x10x5 
cm 

5x3.8x1.2 
cm 

10x5x1.5 
cm 

12x10x2 
cm 

30x6x8 
cm  

Power    120 mW 100 mW    
Power 
Source 

Battery 
(9V) 

Battery 
(6V) 

Battery 
(9V) Battery Battery 

(9V) 
Battery 

(9V)  Battery  
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Table 2.2. Academic prototype wireless sensors: 2004-2009. 
 Mastr-

oleon,  
et al. 

(2004) 

Shino-
zuka, 

(2003); 
Chung,  
et al. 

(2004) 

Ou, et al. 
(2004) 

Sazanov, 
et al. 

(2004) 

Farrar, et 
al. 

(2005); 
Allen 
(2004) 

Wang,  
et al. 

(2005) 

Pei, et al. 
(2005) 

Super 
Node, 
Huang, 
et al. 

(2008) 

Pakzad, 
et al. 

(2008) 

Data Acquisition Module 
ADC 
Channels 5  4/2 6 6 4  8 4 

Sample 
Rate 

480 
Hz    200 kHz 100 

kHz 
100/500 

Hz  
50 Hz 
(over-

sampled) 
ADC 
Resolution 16-bit  8-bit/ 

10-bit 12-bit 16-bit 16-bit 10/12/ 
16-bit 12-bit 16-bit 

Digital 
Inputs 0  2 16  0    

Embedded Computing Capabilities 
Processor Micro-

chip 
PIC-
micro 

 Atmel 
AVR 

ATMega
8L 

Texas 
Instru-
ments 

MSP430
-F1611 

Intel 
Pentium/ 
Motorola 

Atmel 
AVR 

ATMeg
a 128 

Moto-
rola 

68HC-11 

TI MSP-
430 

Atmel  
AVR 

ATMega 
128L 

Bus Size 16-bit/ 
8-bit  8-bit 16-bit 16-bit 8-bit 8-bit 16-bit 8-bit 

Clock 
Speed     120/233 

MHz 8 MHz  8 MHz 8 MHz 

Program 
Memory   8 kB 16 MB 256 MB 128 kB 32 kB 48 kB 128 kB 

Data 
Memory   1 kB  Compact 

Flash 128 kB 32 kB 1024 kB 512 kB 

Wireless Communications Specifications 
Radio Blue-

Chip 
RFB-
915B 

 Chipcon 
CC1000 

Chipcon 
CC2420 

Motorola 
neuRFon 

Max-
stream 
9XCite 

Max-
Stream 

X-stream 

Uniband 
UZ2400 

Chipcon 
CC2420 

Frequency 
Band 

900 
MHz 2.4 GHz 433 

MHz 2.4 GHz 2.4 GHz 900 
MHz 

900 
MHz/ 

2.4 GHz 
2.4 GHz 2.4 GHz 

Wireless 
Standard 

IEEE 
802.15.

1 
IEEE 

802.11b  IEEE 
802.15.4 

IEEE 
802.15.4   IEEE 

802.15.4 
IEEE 

802.15.4 
Spread 
Spectrum Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Outdoor 
Range 

200- 
300 m 250 m  75 m 9.1 m 300m  100 m 75 m 

Indoor 
Range     9.1 m 100 m  30 m 20 m 

Data Rate 19.2 
kbps  76.8 

kbps 250 kbps 230 kbps 38.5 
kbps  250 kbps 250 kbps 

Assembled Unit Attributes 

Dimensions 8x8x2 
cm 

6x9x3.1 
cm    10x6x4 

cm    

Power    75 mW 6 W   75 mW 350 mW 
Power 
Source  Battery + 

Solar Battery   Battery 
(7.5V) 

Battery 
(9V)  Battery 

(9V) 
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Table 2.3. Four families of commercial wireless sensors: 1999-2009. 
 UC 

Berkeley 
Cross-
bow 

WeC: 
1999 

UC 
Berkeley 
Crossbow 

Rene: 
2000 

UC 
Berkeley 
Crossbow 

MICA: 
2002 

UC 
Berkeley 
Crossbow 
MICA2: 

2003 

Intel 
iMote 
Kling 
(2003) 

Intel/ 
Crossbow 
iMote 2, 

Kling 
(2005) 
(2008) 

Micro-
strain, 
Galbr-
eath 

(2003) 

Rock-
well, 
Agre 

(1999) 

Data Acquisition Module 
 

ADC 
Channels 8 8 8 8  4 8 4 

Sample 
Rate 1 kHz 1 kHz 1 kHz 1 kHz  Variable 

1.7 kHz 
(1 

channel) 
400 Hz 

ADC 
Resolution 10-bit 10-bit 10-bit 10-bit  12-bit 12-bit 20-bit 

Digital 
Inputs         

Embedded Computing Capabilities 
 

Processor Atmel 
AT90LS

8535 

Atmel 
ATMega 

163L 

Atmel 
ATMega 

103L 

Atmel 
ATMega 

128L 

Zeevo 
ARM-
7TDMI 

PXA271 
XScale 

Micro-
Chip 
PIC-

16F877 

Intel 
Strong-
ARM 
1100 

Bus Size 8-bit 8-bit 8-bit 8-bit 32-bit 32-bit 8-bit 32-bit 
Clock 
Speed 4 MHz 4 MHz 4 MHz 7.383 

MHz 
12 

MHz 
13-416 
MHz  133 

MHz 
Program 
Memory 8 kB 16 kB 128 kB 128 kB 64 kB 256 kB  1 MB 

Data 
Memory 32 kB 32 kB 512 kB 512 kB 512 kB 32-64 MB 2 MB 128 kB 

Wireless Communications Specifications 
 

Radio TR1000 TR1000 TR1000 Chipcon 
CC1000 

Wire-
less BT 
Zeevo 

Chipcon 
CC2420 

RF 
Mono-
lithics 

DR-
3000-1 

Con-
exant 

RDSSS
9M 

Frequency 
Band 

868/916 
MHz 

868/916 
MHz 

868/916 
MHz 

315, 433, 
or 868/ 

916 MHz 

2.4 
GHz 2.4 GHz 916.5 

MHz 
916 

MHz 

Wireless 
Standard     IEEE 

802.15.1 
IEEE 

802.15.4   

Spread 
Spectrum No No No Yes Yes Yes  Yes 

Outdoor 
Range      30 m   

Indoor 
Range      50 m  100 m 

Data Rate 10 kbps 10 kbps 40 kbps 38.4 kbps 600 
kbps 250 kbps 75 kbps 100 

kbps 

Assembled Unit Attributes 
 

Dimensions 2.5x2.5x
1.3 cm     3.6x4.8  7.3x7.3

x8.9 cm 
Power 575 mAh 2850 mAh 2850 mAh 1000 mAh     

Power 
Source 

Coin 
Cell 

Battery 
(3V) 

Battery 
(3V) Coin Cell Battery Battery Battery 

(3.6V) 

Battery 
(two 
9V) 
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Table 2.4. Active wireless sensors: 2003-2009. 
 Lynch, et 

al. 
(2003b; 
2004c) 

Grisso, et 
al. (2005) 

Allen  
(2004) 

Narada, 
Swartz, et 
al. (2005) 

SHiMmer, 
Musiani, et 
al. (2007) 

Masca-
renas, et al. 

(2007) 

TelosB 
(2008) 

Data Acquisition Module 
ADC 
Channels 32 8 6 4 16 1 8 

Sample 
Rate 40 kHz >50 kHz 200 kHZ 10 kHz 10 MHz 1 MHz  

ADC 
Resolution 10-bit 16-bit 16-bit 16-bit 12-bit 12-bit 12-bit 

Digital 
Inputs 0 1  0   0 

Actuation Module 
DAC 
Channels 1 Impe-

dance 
Impe-
dance 2 16 PZT 

Interface 
Impedance 2 

Sample 
Rate 40 kHz   10 kHz 1 MHz   

DAC 
Resolution 12-bit   12-bit 12-bit  12-bit 

Voltage 
Outputs ± 5 V   0-4.095 V ± 15 V   

Embedded Computing Capabilities 
Processor Motorola 

MPC555 
PowerPC 

Diamond 
Systems  
PC 104 

Pentium Atmel 
ATMega 

128 

TI 
TMS320-

R2811 

Atmel 
ATMega 

128L 

TI MSP-
430 

Bus Size 32-bit  32-bit 8-bit 32-bit 8-bit 16-bit 
Clock 
Speed 40 MHz 100 MHz 133 MHz 8 MHz  8 MHz 8 MHz 

Program 
Memory 448 kB 64 kB 256 MB 128 kB 128 kB 128 kB 48 kB 

Data 
Memory 512 kB 32 MB Compact 

Flash 128 kB 1 MB 4 kB 1024 kB 

Wireless Communication Specifications 
Radio Proxim 

ProLink 
Radio-
metrix 

Motorola 
neuRFon 

Chipcon 
CC2420 

Chipcon 
CC1100 

Max-Stream 
XBee 

Chipcon 
CC2420 

Frequency 
Band 

902-928 
MHz 480 MHz 2.4 GHz 2.4 GHz 433 MHz 2.4 GHz 2.4 GHz 

Wireless 
Standard   IEEE 

802.15.4 
IEEE 

802.15.4  IEEE 
802.15.4 

IEEE 
802.15.4 

Spread 
Spectrum  Yes Yes Yes Yes Yes Yes 

Outdoor 
Range 300 m 1,000 m 9.1 m 50/300 m  90 m 75 m 

Indoor 
Range 150 m  9.1 m 20/100 m  30 m 20 m 

Data Rate 2.4 kbps 5 kbps 230 kbps 250 kbps  250 kbps 250 kbps 

Assembled Unit Attributes 

Dimensions 7x7x2.5 cm   6x6x2 cm   6.5x3.1x0.6 
cm 

Power    200 mW 0.68-3.5 W 212 mW  

Source Battery 
(9V) 

Battery 
(9V) 

Battery 
(9V) 

Battery 
(9V) Vibrations RF Power Battery 

(3V) 



40 
 

presented by Lynch, et al. (2003b, 2004c) as well as Narada, are capable of commanding 

a host of actuators that are useful in structural control.  Of the two, Narada is a lower 

power device, higher sampling resolution, and supports a significantly faster 

communication data rate.  In recent years, the TelosB commercial platform has also 

become available, consumes very low levels of energy, and may be appropriate for some 

wireless structural control applications in which sensing resolution is not a critical 

concern. 

 

2.4. The Narada Wireless Sensor 

The Narada wireless sensor (Figure 2.3) was developed at the University of Michigan 

in 2004, explicitly for structural monitoring and feedback control applications (Swartz, et 

al. 2005).  It was designed for use in low-cost, high-density sensor networks where the 

high cost of cable installation makes traditional tethered sensor and actuator networks 

undesirable.  Furthermore, it was intended to be able to run on battery power for a long 

period of time (up to two years, depending on the duty cycle of use) in the absence of a 

power supply native to the monitored structure; therefore, it was designed to be a very 

low-power device.  To meet the low-cost requirements, its design takes advantage of 

commercial, off-the-shelf (COTS) technology for all of its functional components.  

Finally, to participate in active sensing and control activities, an actuation interface is 

included in the design.  The complete design of the Narada wireless node is broken down 

into two parts: hardware design and software design. 
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2.4.1. Narada Hardware Design 

The sensor node itself includes four functional modules (Figure 2.4).  The first 

module is the computational core which is defined by the microcontroller (Atmel 

Atmega128) and is responsible for the autonomous operation of the device.  The 

Atmega128 (Atmel 2009) is a low-power, 8-bit microcontroller with 128 kB of flash 

memory, 4kB of Static Random Access Memory (SRAM), and 4 kB of Electrically 

Erasable Programmable Read-Only Memory (EEPROM).  Embedded software, termed 

firmware, is stored within the microcontroller.  The firmware includes two categories of 

software: first, an operating system (OS) is embedded for the configuration and operation 

of peripheral components on the sensor, as well as for real-time allocation of processing 

 

Figure 2.3. Narada wireless sensing nodes. 
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power.  Second, application software is installed consisting of specific engineering 

algorithms that are responsible for local data processing of interest to the end-user.  An 

additional 128 kB of external SRAM has also been added to the computational core in 

order to enhance local data buffering and computational capabilities within the sensor.   

The second module is the sensing interface.  It consists of a Texas Instruments 

ADS8341 (Texas Instruments 2003) which is a 4-channel, 16-bit analog-to-digital 

converter (ADC) with an input range of 0-5 V.  This interface allows the sensing system 

to measure data from up to four transducers per sensing node (channels numbered 0 

through 3) and gives considerable flexibility in the type of transducer used.  The 

resolution of the ADC is unique for a wireless sensing platform as it is unusually high 

(i.e., most commercial wireless sensors employ 10 to 12-bit ADC interfaces).  Narada 

was designed with a high resolution ADC to allow for low signal data collection; low 

signals may be lost in the noise floor of the sensor if the ADC resolution is not 

sufficiently high.  The Narada four-layer printed circuit board (PCB) has been carefully 

 

Figure 2.4. Narada wireless sensing node architectural schematic. 
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designed (e.g., careful separation of power and ground planes servicing analog and digital 

components of the node circuitry) to preserve this resolution resulting in true 16-bit 

performance where the quantization error is just one bit (1/65536th of the input analog 

voltage range).  The maximum sample rate of the Narada node using this interface is 

10,000 Hz and is limited by the speed of the data bus between the ADC and the 

microprocessor in the computational core. 

The third module in the Narada design is the communications interface.  The wireless 

interface consists of a Texas Instruments CC2420, which is a wireless transceiver that 

meets the IEEE 802.15.4 communications standard for dense, adaptive wireless 

networking (Texas Instruments 2008).  The wireless transceiver is a spread-spectrum 

device that operates within the 2.4 GHz Federal Communications Commission (FCC) 

defined unlicensed industrial, scientific, and medical (ISM) communications frequency 

band.  It also operates below the FCC established power limit of 1 W, defined for such 

devices.  The transceiver is capable of maintaining an over-the-air communications rate 

of 250 kbps and can reliably communicate over a range of 50 m.  A useful feature of the 

CC2420 transceiver is that the output wireless signal can be varied from weak to strong 

(Texas Instruments 2008).  Reducing the output power of the radio results in reduced 

power consumption and range.  Similarly, if long communication range is necessary, the 

radio can be commanded to have high output power to meet range requirements but 

resulting in greater power consumption.  Smart communication schemes can vary the 

transmission power level as required depending on the distance to the target receiving 

node(s) as well as the quality (i.e., noise level) of the communication bandwidth. 
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The communications interface sits on a modular daughter board that can be removed 

from the rest of the sensing unit to allow the user to install alternative communication 

modules, if necessary.  A power-amplified version of the radio board has also been 

developed to provide increased communications range for applications that require it.  

The power-amplified radio daughter board is described in greater detail in the following 

section. 

The final module of the sensor node design is the actuation interface consisting of a 

DAC7612 (Burr-Brown 1999), a 2-channel, 12-bit Texas Instruments digital-to-analog 

converter.  The DAC has an output range of 0-4.1 V and gives the sensor actuation 

capabilities so that it can, if desired, participate in active sensing or even feedback control 

activities.  The maximum actuation rate of the DAC is comparable to the maximum 

sample rate of the ADC (10,000 Hz) which is limited by the speed of the data bus 

between the DAC and the microcontroller.  As the ADC and the DAC share this data bus, 

this rate is for one of these interfaces at a time.  The maximum combined sample/actuate 

rate is one half of the independent rate (5,000 Hz). 

The power draw of the Narada wireless sensor is 200 mW, assuming all components 

are operating simultaneously (250 mW using the power-amplified wireless transceiver 

board).  Power savings can be accomplished by putting portions of the sensor (or the 

entire sensor) into sleep mode.  The sensor is designed to run on 6 AA size nickel-metal 

hydride (NiMH) rechargeable batteries.  Without being placed in sleep mode, the fully-

active sensor will exhaust the rated life of the batteries in just over 5 days.  Turning off 

various components when not used will also extend this life span.  Full duty-cycle 

operation using only the microcontroller will allow for just over 12 days before depleting 
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the batteries.  Adding the ADC reduces this time to just over 11 days.  Adding the 

external memory reduces this time to 6.8 days.  The transceiver is responsible for the 

bulk of the remaining power consumption.  Using an appropriate duty cycle, the battery 

life can be extended to one or two years, limited by the storage losses of the batteries.  

Table 2.5 summarizes the characteristics of the Narada wireless node. 

 

2.4.2. Modular Power-Amplified Radio Option 

The IEEE 802.15.4 standard defines a wireless personal area network (WPAN) 

technology (IEEE 2006).  Such networks are, by nature, relatively low-range.  Wireless 

devices based on transceivers designed to meet this standard have relatively limited 

communication distances, on the order tens of meters.  Some examples include 

communications ranges of 30 m for the Imote2 (Crossbow Technology 2007) and of 50 m 

for the Narada wireless sensor using its native communication interface.  In civil 

applications, where the size of the instrumented structures may necessitate that data be 

transmitted distances on the order of hundreds of meters, short-range communications 

Table 2.5. Narada wireless sensor performance characteristic summary. 
Performance Characteristics 

Cost $175 per unit 

Form Factor 6 cm x 6 cm x 2 cm 

Energy Source 6 AA Ni-Metal Hydride Batteries 

Peak Power 200 mW (250 mW power-amped) 

Range 50 m (500 m power-amped) 

Data Rate 250 Kbps 

Sample Rate 10 kHz 
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will necessitate unduly large numbers of transmission “hops” (the serial retransmission of 

data by multiple units in a network to route it over distances in excess of the originating 

unit’s range).  The redundant data transmissions that characterize multi-hop networks 

erode the available bandwidth on the wireless communications channel thereby limiting 

the total data throughput of the network as a whole (Raghavendra, et al. 2004).  Where 

data throughput is critical, bandwidth may be recovered by increasing the transmission 

range of individual units and reducing the number of hops required by the system. 

Increased range can usually be achieved through increased transmitted signal strength 

by changing the location of the transmitter and receiver antennas with respect to their 

surroundings (i.e., more favorable use of physical wave guides or obstacles) or reduction 

of ambient RF noise.  In the deployment of a wireless sensor network, designers often 

have limited control over the second and third of these parameters, but transmitted signal 

strength may be readily increased through application of improved-range antennas (i.e., 

high-gain and directional antennas), increased transmission power, or both.  To take 

advantage of the benefits of higher transmission power, in applications where range is an 

important network design consideration as well as the benefits of lower power 

consumption, in shorter range applications, the CC2420 wireless transceiver has eight 

different output power setting ranging from 28 mW to 57 mW (Texas Instruments 2008).  

This option allows the network designer to tailor the output power level to specific 

applications. 

In addition to this native ability of the wireless transceiver, the Narada wireless 

sensor unit has been equipped with a modular communication interface that sits on a 

removable daughter-board.  Using its native interface (Texas Instruments CC2420), 
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transmission power to the antenna is limited at 1.0 mW (0 dBm) from 57 mW of power 

drawn from the batteries.  That communication interface may be swapped out for a 

power-amplified daughter board (Figure 2.5) that can transmit at power levels up to 10 

mW (10 dBm) from 114 mW of power drawn from the batteries.  The modular nature of 

the transceiver board allows it to be used only in high-range applications, saving battery 

life when it is not necessary.  The power-amplified module doubles the strength of 

transmissions emanating from the unit increasing both range and the reliability of 

communications in noisy communication environments.  This extra range, of course, 

comes at the expense of additional energy consumption.  In addition, standard-gain omni-

directional antennas as well as high-gain, directional antennas are available for the 

Narada wireless sensor.  With the addition of high-gain directional antennas, the 

maximum range of the Narada system (in the strong direction of the directional antenna) 

is over 500 m.   

   

 
Figure 2.5. Narada wireless sensing unit with both regular and extended range radio 

transceivers. 
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2.4.3. Narada Software Design 

Embedded software for the wireless sensors (termed firmware) is made up of two 

general categories: the operating system (OS) that controls the node, and engineering 

analysis algorithms that perform local processing of raw sensor data. The operating 

system is responsible for both coordinating the operation of the wireless sensor and for 

providing device drivers that operate peripheral sensor components (e.g., ADC, wireless 

transceiver, DAC). One popular operating system used on many commercial and 

academic wireless sensors is TinyOS, an open-source operating system originally 

designed at University of California, Berkley (Levis, et al. 2004; Ruiz-Sandoval, et al. 

2006).  TinyOS is a generic platform intended to operate on a broad variety of hardware 

platforms for multiple applications.   

In this study, a custom OS is embedded within the Narada sensor (Figure 2.6).  This 

OS is tailored to meet the needs of smart civil infrastructure applications, allows access to 

 
Figure 2.6. Graphical overview of the Narada embedded operating system. 
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the sensing, actuation, and communications interfaces on Narada, and provides basic 

services including sensor diagnostics, measurement of communication quality of service, 

management of device settings, and establishment of network synchronization.  In 

addition, the OS defines the memory allotment given to operational tasks as well as 

engineering algorithms.  The OS must also provide timely access to computational 

resources (i.e., memory and the processor) to embedded engineering algorithms that 

accomplish tasks necessary for monitoring and control.  Below, a description of the 

Narada OS and basic data collection package is presented including a discussion of multi-

tasking, application specific memory mapping, network synchronization, data collection, 

and data transmission. 

One important feature of operating systems for wireless sensing (Narada included) is 

the ability to simultaneously execute multiple tasks. This ability, called multi-threading 

(or multi-tasking), is similar to the multi-tasking operation of a personal computer. In 

wireless sensors, multi-threading can be an indispensible feature, allowing them to 

transmit data within the network while not interrupting sensing (or actuation) activities.  

To keep the overall footprint of the OS as small as possible, a prioritized event-driven 

multi-tasking scheme is adopted (similar to that developed for later versions of TinyOS 

(Levis 2006)) by which high-priority tasks, such as data sampling, data reception, or 

actuation, can interrupt lower priority tasks, such as data processing.  By use of the event-

driven multi-tasking method, the Narada OS avoids the need for a computationally-

intensive software-driven event sequencer. 

To achieve the best performance possible on the Narada wireless sensor, the 

operating system has been tailored to both the hardware platform it runs on and the 
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application for which it has been designed.  This practice is to reduce the size of the 

operating system within the sensor memory and to minimize non-deterministic OS 

related delays in code execution. Inefficient or overly generic operating systems can 

consume memory, thereby reducing the memory space available for the storage of data 

and engineering algorithms. Depending on the application, large blocks of memory may 

be required to run the necessary algorithms. Additional memory may be added to 

augment the on-processor memory, but accessing external memory requires additional 

clock cycles (and power consumption) compared to what is required to access internal 

memory; this delay in reading and writing to external memory may become a problem in 

time-critical applications.   

In addition to memory concerns, another major challenge in wireless sensing (as well 

as in utilization of data collected over a computer network) is data synchronization 

(Raghavendra, et al. 2004).  Unlike in a traditional data collection system, defined by a 

single computer operating on a single clock that can initiate data collection from multiple 

sensors, a wireless sensing network is composed of multiple computers each operating 

according to its own local clock.   Synchronization of the clocks within these multiple 

devices must take place using the available communication media.  However, 

synchronization by wireless communications is dependent upon the propagation and 

processing of synchronization messages broadcast between the networked processors.  

This task is made more difficult in wireless networks where signal propagation times are 

stochastic, and direct communications between all units in the network may not be 

possible (Raghavendra, et al. 2004).  Errors in synchronization will lead to corruption of 

the phase information inherent within the data signals that may necessary for correct 
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computation of certain processing algorithms, including modal analysis (Ginsberg 2001), 

input-output or multiple-output models (Ying, et al. 2005), or feedback control 

algorithms (Lian, et al. 2005).  While methods do exist to correct for existing 

synchronization error in collected data (Nagayama 2007; Yan, et al. 2009), minimization 

of the error at the outset (to a value that is significantly smaller than the sampling time 

step) can eliminate the need for synchronization correction algorithms and their 

associated computational overhead. 

Data collected on the Narada wireless sensor is synchronized through means of a 

beacon packet initiated by a central server.  Long-range packet transmission options 

developed for the Narada platform allow networks distributed over areas with diameters 

as large as 1000 m to be initiated in this manner (centered on the server).  

Synchronization errors resulting from beaconing are the result of differential signal 

propagation times as well as differential processing times.  Due to multi-path effects, the 

differential signal propagation times are stochastic, but are limited by the signal 

propagation range of the system (1000 m divided by the speed of light, or 3.3 µs).  On 

Narada, differential processing time is limited by restricting the actions of the wireless 

sensor at the beginning of a data collection test.  Specifically, the sensing units in the 

network are placed in a wait state, composed of a “while” loop, that will execute (at 

most) four assembly level instructions before a beacon packet is serviced.  This practice 

limits the differential processing time to four clock cycles on the microprocessor 

(operating at 8.0 MHz) plus the potential differential delays in wireless transceiver 

processing (which are in turn limited by the size of the digital data buffer located within 

the transceiver).  The synchronization error due to differential processing time has been 
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characterized experimentally by use of multiple, collocated sensing nodes programmed to 

raise a digital logic line when the first data point is ready (after successful reception of 

the start beacon).  The differential processing time is then measured on a digital 

oscilloscope.  The average differential processing time synchronization error on Narada 

is found to be 10.8 µs, with variance of 7.4 µs, and a peak observed value of 30 µs.  The 

distribution of these errors is depicted in Figure 2.7.  Considering 200 Hz as a typical 

sampling frequency for civil engineering applications, these results indicate a maximum 

synchronization error of less than 0.7% of a time step on the Narada system without use 

of post-processing synchronization correction algorithms. 

As part of the operating system, a basic data collection module was developed.  The 

module supports data collection for up to 65,534 wireless sensing devices that collect 

data and transmit it back to a personal computer (PC) for archival.  The connection to the 

PC is accomplished through use of a CC2420DBK Texas-Instruments wireless radio 

development board that uses a CC2420 wireless transceiver connected to an ATmega128 

 
Figure 2.7. Distribution of measured differential beacon processing synchronization 

error for a Narada wireless sensor network. 
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microprocessor.  Received IEEE802.15.4 packets are transmitted to the PC via the 

board’s RS-232 (serial) port and, likewise, serial data received from the PC is converted 

to wireless packets and broadcast over the air.  The upper limit of the network size is 

dictated by the number of unique node identification numbers supported by the 

IEEE802.15.4 standard, but wireless bandwidth and communication range impose a 

practical limitation on network size far below that limit.  To maximize the number of data 

channels that can be supported on a single network, a single-hop, TDMA 

communications standard has been developed for this application.  The basic data 

collection module supports sampling rates up to 10,000 Hz with a limit of 30,000 data 

points that can be buffered on the wireless sensor at a given time.  In single-cycle mode, 

the sensing units collect a finite amount data (less than the local buffer limit) and transmit 

it back to a server program running on the PC.  In this mode, data transmission is not 

time-critical and does not impose any special limitations on network size.  In continuous 

collection mode, the units will buffer data locally until queried by the server.  Each 

sensing unit in the network is polled in turn, transmitting data back in 50 point packets 

(one sensing channel at a time) until the buffer is empty (the buffer size can be selected 

by the user).  The network size in this mode is limited by the wireless communications 

channel and depends on the sampling rate and quality of communication.  For example, at 

100 Hz, a single wireless channel can support 16 sensor channels of data (on anywhere 

from 4 to 16 sensing units) if there is little to no communication noise.  As of this writing, 

the largest single network of Narada sensing units deployed is sixty. 

   

  



54 
 

2.5. Narada Development Conclusions 

In this chapter the Narada wireless sensor that has been tailored for smart civil 

infrastructure applications is presented.  The system boasts low per-channel costs 

(comparable to many commercial wireless systems, considerably less expensive than 

traditional cable-based systems) and is easy (and inexpensive) to install due to its use of 

wireless communication technology rather than traditional (and expensive) cabled 

technology.  These cost attributes encourage the use of high-density sensor networks in 

future wireless monitoring systems.  Furthermore, the system includes a high resolution 

(16-bit) analog-to-digital converter within its sensing interface that allows it to 

differentiate low-level ambient vibrations from the electrical noise inherent within the 

sensor.  The Narada system also includes an actuation interface consisting of a digital-to-

analog converter that give the sensor the ability to command a wide range of analog 

actuators necessary for automated response of the smart structure to external stimuli.  

Finally, the sensor also contains a computational core running the operating system that 

coordinates the activities of the communication, sensing, and actuation interfaces, as well 

as defining communication protocols, memory and processor allotment, and the 

organization for a basic data collection algorithm. 

The development of hardware and an operating system for the wireless sensor are 

only part of the solution.  Central to the wireless monitoring architecture is the fact that 

sensors are essentially collocated with embedded computing resources, namely 

processing power and memory.  This fact implies that the sensors can do more than 

merely collect and report data.  Therefore, another critical step is the development of a 

library of embedded algorithms that may be combined for monitoring operations such as 
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modal analysis, auto-regressive modeling, model updating, damage detection, and 

feedback control.  Both the operating system and the engineering algorithms may be 

written in a high-level programming language, C, with only the most time-critical 

operations requiring assembly level instructions that are microprocessor specific.  A host 

of building block algorithms are developed to run within the Narada wireless network to 

support high-level embedded analysis and control applications.  Novel applications of 

these embedded engineering algorithms for smart civil structures are presented in the 

following chapters. 
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CHAPTER 3 

 

FIELD VALIDATION OF NARADA WIRELESS SENSORS: HYBRID 

WIRELESS HULL MONITORING OF NAVAL COMBAT VESSELS 

 

Wireless sensors for smart structures must operate successfully, not only in the 

laboratory, but for extended periods of time in the field.  Ultimately, smart structures 

must be able to operate independently (i.e., without supervision), many times in difficult 

operational environments, in order to realize their potential for low-cost, autonomous 

protection of infrastructure assets.  In this chapter, a two-month, autonomous field 

validation study is performed employing the Narada wireless sensing system as part of a 

hybrid wireless hull monitoring system aboard a U.S. Navy littoral combat vessel.  Also, 

as there is increasing interest by the naval engineering community in permanent 

monitoring systems that can monitor the structural behavior of ships during their 

operation at sea, this study also seeks to reduce the cost and installation complexity of 

hull monitoring systems by introducing wireless sensors into their architectural designs.  

Wireless sensor networks also provide other advantages over their cable-based 

counterparts such as adaptability, redundancy, and weight savings.  While wireless 

sensors can enhance functionality and reduce cost, the compartmentalized layout of most 
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ships requires some wired networking to communicate data globally throughout the ship.  

In this study, 20 Narada wireless sensing nodes are connected to a ship-wide fiber-optic 

data network to serve as a hybrid wireless hull monitoring system on a high-speed littoral 

combat vessel (FSF-1 Sea Fighter).  The wireless hull monitoring system is used to 

collect acceleration and strain data during unattended operation during a one-month 

period at sea.  The key findings of this study include that wireless sensors can be 

effectively used for reliable and accurate hull monitoring.  Furthermore, the fact that they 

are low-cost can lead to higher sensor densities in a hull monitoring system thereby 

allowing properties, such as hull mode shapes, to be accurately calculated as will be 

presented. 

 

3.1. Field Validation Introduction 

The U.S. Navy is currently exploring novel ship design concepts optimally suited for 

future littoral (shallow-water) combat operations.  For example, the joint high-speed 

vessel (JHSV) and littoral combat ship (LCS) acquisition programs are focused on high-

speed ships constructed from light-weight materials such as aluminum alloys (Hess 

2007).  In addition to the use of new materials, many of the vessels under investigation in 

the JHSV and LCS acquisition programs employ non-conventional hull forms including 

the use of multi-hull catamarans.  The combination of lightweight aluminum and multi-

hull forms provide ships with the speed and maneuverability necessary for littoral combat 

operations. However, high-performance aluminum ships also provide a number of 

operational challenges to the naval engineering community.   First, the use of aluminum 

in the construction of the hull will lead to higher incidences of fatigue cracking (Donald 
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2007); in addition, once fatigue cracks initiate, their growth in aluminum will be 

significantly greater than those in steel hulls.  Other challenges associated with aluminum 

materials is stress-corrosion cracking and material sensitization during high operational 

temperatures (Katsas, et al. 2007).  Second, multi-hull ship designs can lead to complex 

dynamic behavior during high-speed operation in demanding sea conditions (Hess 2007).  

Furthermore, the unique design of these ships increases the probability that crews will 

operate them near, or even beyond, their safe operating envelops due to the loss of “feel” 

for the vessel’s response to seaway loads (Pran, et al. 2002).   

Historically, the hulls of U.S. Navy ships are inspected by the crew and port engineer 

to ensure the hull is in a state of good health.  While this approach has proven effective in 

the past, the method does suffer from some inherent drawbacks.  First, visual inspection 

is labor-intensive.  As the Navy continues to reduce manning on future naval vessels 

(Lively, et al. 2008), the manning requirements of visual hull inspections will grow 

increasingly difficult to satisfy.  Second, visual inspection can only observe obvious 

damage conditions.  For example, hairline cracks with small dimensions are difficult to 

identify visually, even when using dye penetrants (Zoughi and Kharkovsky 2008).  In the 

case of ships constructed of aluminum, thick insulation is commonly installed to protect 

the aluminum hull from heat and fire.  Visual inspection would require removal and 

reinstallation of the insulation, which adds significant complexity and cost to the 

inspection process.  The U.S. Navy is therefore interested in the development of 

permanent hull monitoring systems that monitor the anticipated performance and health 

of high-performance aluminum vessels.  This interest is in response to the maintenance 
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issues (e.g., fatigue cracking) and inspection difficulties associated with high-speed 

aluminum ships. 

Hull monitoring systems in use in the commercial shipping industry typically consist 

of foil strain gauges, accelerometers and gyroscopes installed throughout a vessel to 

measure the ship rigid-body motion and hull deformations to seaway loads.  Crews 

provided with real-time hull response data can pilot the ship in a manner that minimizes 

overloading during extreme seaway conditions (Pran, et al. 2002).   Commercial hull 

monitoring systems consisting of a handful of sensors can cost, on average, $50,000 per 

system to purchase and install (Slaughter, et al. 1997).  A large fraction of the system 

cost is associated with the installation of coaxial wiring used for the communication of 

sensor data to the hull monitoring system central processing unit.  In addition to being 

expensive to install, cables add weight to the vessel, which is a critical issue for vessels 

designed to be light-weight, such as high-speed aluminum vessels.  Furthermore, wires 

installed in a combat vessel are vulnerable to detriments such as heat, moisture, and toxic 

chemicals common in harsh military operational environments (MacGillivray and 

Goddard 1997).  For multi-hulled aluminum ships, the costs affiliated with the 

installation of a hull monitoring system grows higher because of the thick insulation 

layers covering the aluminum hull for protection from heat and fire (Sielski 2007).  

Provided the challenges associated with wired hull monitoring systems, wireless 

sensors can be explored for use within monitoring system architectures.  Wireless sensors 

have emerged in recent years as low-cost alternatives to tethered sensors; their use is 

especially attractive for structures with large dimensions or with difficult to access spaces 

(Lynch and Loh 2006).  In this study, a hull monitoring system is designed using wireless 
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sensors to measure the response of a high-speed aluminum vessel undergoing seakeeping 

trials.  Specifically, a two-tiered hull monitoring system is proposed in the study.  At the 

lowest layer of the system architecture, wireless sensors capable of reliable short-range 

communication within ship compartments are installed to collect strain and acceleration 

measurements of the hull.  Wireless sensor networks are then connected to a ship-board 

fiber-optic data network which serves as the hull monitoring system’s second tier.  The 

fiber-optic layer of the system architecture is necessary to establish communication 

between spatially distributed clusters of wireless sensors contained within different ship 

compartments.  The fiber-optic network also facilitates the use of a central server to 

control and operate the multiple wireless sensor clusters as a single, global hull 

monitoring system.   

The FSF-1 Sea Fighter (Figure 3.1), a high-speed littoral combat vessel designed with 

a wave-piercing catamaran aluminum hull, is used to demonstrate the efficacy of the 

proposed hybrid wireless hull monitoring system in a realistic marine environment. The 

strain and acceleration response of the ship is continuously and autonomously (i.e., 

 (a) (b) (c) 

Figure 3.1.  The FSF-1 Sea Fighter, a high-speed aluminum ship designed to support 
future littoral combat operations of the U.S. Navy: (a) side view (courtesy U.S. Navy), 
(b) back view (courtesy U.S. Navy), and (c) view of the Sea Fighter in operation at sea 

(courtesy U.S. Navy). 
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without user intervention) collected by the hull monitoring system during a one-month 

transit from Panama City, Florida to Portland, Oregon.  As part of the study, a 

comparison between hull response data recorded by the experimental wireless hull 

monitoring system and those identically recorded by the ship’s permanent tethered (i.e., 

wired) hull monitoring system is made to assess the accuracy of the experimental 

wireless system.  Finally, acceleration hull response data collected from the wireless 

monitoring system is used to perform a modal analysis of the ship including identification 

of the ship’s global modal frequencies and operational deflection shapes.  First, the 

chapter presents a detailed description of the Sea Fighter and the wired hull monitoring 

system installed on-board prior to this study.  Then, the hybrid wireless hull monitoring 

system designed and installed for this study is presented in detail.  The third part of the 

chapter presents raw data collected by both hull monitoring systems along with the modal 

characteristics of the ship derived from the raw data presented.  Finally, concluding 

remarks about the effectiveness of the hybrid wireless hull monitoring system in the 

shipboard environment are presented along with a description of the lessons learned 

during the study. 

 

3.2. FSF-1 Sea Fighter 

The FSF-1 Sea Fighter (Figure 3.1) is a 79.9 m long, multi-hull catamaran-style ship 

designed for high-speed littoral combat missions.  The ship was designed by BMT Nigel 

Gee (Southampton, U.K.) and constructed in 2003 by Nichols Brothers Boat Builders 

(Freeland, WA) (Bachman, et al. 2007).  To provide the ship with speed, the hull is 

constructed from aluminum, thereby keeping the total weight of the ship down.  The Sea 
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Fighter’s hull consists of 61 identical aluminum frames evenly spaced (1.2 m apart) along 

the length of the ship; six of these frames serve as water-tight bulkheads.  The ship is 

designed with three main levels: 1) the main deck, 2) the bridge, and 3) machinery and 

tank spaces below the main deck.  Using both diesel and gas turbine propulsion systems, 

the Sea Fighter is nominally capable of operating at speeds up to 50 knots and in 

conditions up to sea state 5.  Sea Fighter is also equipped with a sophisticated ride control 

system (active rear interceptors and forward T-foils) which enhances the ship’s 

maneuverability at high speed (Bachman, et al. 2007).   

Designed as a multi-purpose sea-based combat platform, the ship’s main deck is 

relatively open for the secure housing of modular shipping containers that contain gear 

and equipment specific to a variety of littoral combat missions.  The main deck area for 

 

Figure 3.2.  FSF-1 Sea Fighter mission bay.  While an open space, the bay is occupied 
by large steel shipping containers as seen in this photo. 
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storing these containers is referred to as the mission bay (Figure 3.2).  The mission bay 

runs from the stern of the ship, 52 m forward, and spans the entire width of the vessel 

(22.0 m).  The inside of the mission bay is generally protected from the sea environment, 

but does have some small openings above the ship waterline to the outside. 

As Sea Fighter is an experimental vessel, the Naval Surface Warfare Center (NSWC) 

elected to install a permanent hull monitoring system during and after the ship’s 

construction in 2003.  The monitoring system, referred to as the Scientific Payload Data 

Acquisition System (SPDAS) is designed by the Technology Management Group, Inc. 

(TMG).  In its design, the hull monitoring system is intended to capture data pertaining to 

the performance of Sea Fighter during seakeeping trials.  The SPDAS system has been in 

operation, collecting data on ship behavior during operation at sea since 2006.  In this 

study, it will serve as a baseline to which the proposed hybrid wireless hull monitoring 

system performance will be compared. 

 

3.2.1. SPDAS 

As an experimental vessel, the Sea Fighter is closely monitored using an extensive 

hull monitoring system custom designed by TMG for the U.S. Navy.  The Scientific 

Payload Data Acquisition System (SPDAS) is a wired hull monitoring system featuring 

10 tri-axial accelerometers (Columbia 307-HPTX), over 100 metal-foil strain gauges 

(Micro Measurements), and a wave height measurement system (TSK) installed on the 

ship bow (Bachman, et al. 2007).  The accelerometers are intended to measure the rigid 

body dynamics of the ship while the strain gauges are used to measure the strain response 
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of the hull.  The TSK wave height measurement system is installed on the ship hull to 

measure wave height and period. 

The accelerometer and strain gauges are installed throughout the ship and are 

interfaced to local data collection units known as data acquisition “bricks”.  The bricks 

locally filter and digitize (using internal analog-to-digital converters) the sensor data 

before it is communicated on the ship’s high-speed fiber-optic network.  While 

accelerometers can be interfaced directly to the SPDAS bricks, an amplification bridge 

circuit is necessary to take strain measurements using metal-foil strain gauges.  For this 

purpose, each strain gauge is connected to a Wheatstone bridge circuit (with a gain of 

100) contained in an enclosure called a “stamp” module.  To limit load resistance, each 

stamp module is installed within one meter of the gauge that it services.  Then, shielded 

coaxial wiring is used to communicate the voltage output of the stamp module to a brick 

where data is digitized and communicated to the server via the fiber-optic network.  

Measurement data communicated by the hull monitoring system’s 28 bricks are 

aggregated at a single data server connected to the network in a lower deck of the ship.  A 

LabView visualization client running on a Windows 2000 operating system is located on 

the ship bridge to query the server for real-time data (e.g., peak hull strain, wave height, 

among others) to be presented to the crew.  The system is designed to provide users with 

a rich set of response parameters associated with hull monitoring.  The seakeeping 

parameters include 6-degree of freedom ship motion measurements, strain responses, 

wind and wave measurements, as well as ship control parameters.   
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3.3. Field Validation Experimental Setup 

In this section, the prototype hybrid wireless hull monitoring system developed for 

the Sea Fighter is described in detail.  First, a brief review of the Narada wireless sensor 

platform is presented as a building block of the two-tiered hull monitoring system (for a 

full description of the Narada system and its development, see Chapter 2).  Following 

that is a description of the hybrid wireless/fiber-optic network developed for the system’s 

upper tier to aggregate data from wireless sensors installed across the ship.  Finally, 

unattended operation of the experimental system is described in detail. 

 

3.3.1. Narada Wireless Sensors 

The Narada wireless sensor (Figure 3.3), developed at the University of Michigan 

(see Chapter 2),  is designed for use in low-cost, high-density sensor networks where the 

high cost of cable installation makes traditional tethered sensor networks undesirable.  

Furthermore, it is intended to be able to run on battery power for a long period of time 

  
 (a) (b) 

Figure 3.3. Narada wireless sensing unit: (a) architectural schematic, (b) top-view of 
fully assembled prototype. 
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(e.g., for up to two years using a low duty cycle) in the absence of a power supply native 

to the monitored structure; therefore it is designed to be a very low-power device.  

Finally, to meet low-cost requirements, its design takes advantage of commercial, off-the-

shelf (COTS) technology for all of its functional components. 

The sensor node itself includes four modules (see Figure 3.3(a)).  The first module is 

the computational core which is defined by the microcontroller (Atmel Atmega128) and 

is responsible for operation of the device.  Embedded software, termed firmware, is 

stored within the microcontroller.  The firmware includes two categories of software: 

first, an operating system (OS) is embedded for the configuration and operation of 

peripheral components on the sensor, as well as for real-time allocation of processing 

power.  Second, application software is installed consisting of specific engineering 

algorithms that are responsible for local data processing of interest to the end-user.  The 

sensor also includes three other modules: the sensing interface, actuation interface, and 

communication interface.  A full description of the Narada wireless sensor, with 

information regarding the function of both hardware and firmware, may be found in 

Chapter 2 of this thesis.  

 

3.3.2. Hybrid Multi-Tiered Network 

Due to their compartmentalized nature, naval vessels present some challenges to 

centralization of measurement data from wireless sensors distributed throughout the ship.  

First, wireless sensors can be installed in high density because of their low costs and 

modular installations.  However, available wireless bandwidth limits the total amount of 

data that can be transmitted on a given frequency channel over a given time period since 
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only one device can transmit at a time.  This fact will effectively limit the channel count 

that can simultaneously operate on the same wireless channel.  In addition, 

communication reliability can be guaranteed if nodes acknowledge reception of data; this 

practice places greater demand on the limited wireless bandwidth.  In an example of the 

effects of these limitations, the Narada wireless sensor network configured to sample 

measurement data at 100 Hz can reliably transmit 12 to 15 channels of real-time data 

continuously on a single communication channel.  The exact number of channels depends 

on the level of interference present in the wireless channel since interference requires 

packets to be occasionally retransmitted.  To help alleviate the burden on a single 

communication channel, the IEEE 802.15.4 standard defines 16 communication channels 

within the 2.4 GHz frequency band (spanning from 2.405 to 2.485 GHz in increments of 

0.005 GHz) that can be accessed simultaneously in the same space without interference 

with each other (IEEE 2006), thereby increasing the amount of data that may be moved 

through a network in a fixed space of time.  By use of sub-networks (subnets) of wireless 

sensors on different communication channels, the achievable sensor channel count in the 

total monitoring system may be dramatically increased.   

The second shipboard challenge, transmission of data between compartments, is more 

problematic for wireless sensor networks.  Decks and watertight bulkheads made of 

conductive materials (e.g., steel or aluminum) that enclose ship compartments naturally 

function as Faraday cages, reflecting virtually all incident electromagnetic waves (Harvey 

1963).  To overcome this inherent challenge of the shipboard environment, existing fiber-

optic Ethernet network cables installed on Sea Fighter are utilized to form a wired upper 

tier of the hull monitoring system architecture.  The fiber-optic system offers a high-data 
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rate connection between the wireless subnets (contained in separate compartments) in the 

lower tier, and the data server remotely located below deck.  On Sea Fighter, the SPDAS 

system has access points to the fiber-optic Ethernet network at the fore and aft ends of the 

mission bay.  Access to this network provides linkage to other important areas of the ship 

including the SPDAS data server located below deck, the secure communications room 

located behind a water-tight bulkhead on the main deck, and the bridge.  A diagram 

depicting the multi-tier, hybrid monitoring system is presented in Figure 3.4. 

 

  

 
Figure 3.4. Overview of the multi-tiered, hybrid wireless/wired network installed on 

Sea Fighter. 
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3.3.3. System Installation 

Installation of the wireless hull monitoring system aboard the Sea Fighter takes place 

over four days at the Naval Surface Warfare Center, Panama City Division, in Panama 

City, Florida.  A network consisting of 20 Narada wireless sensors is installed along with 

sensing transducers (namely accelerometers and interfaces to existing strain gauges) and 

receiver hardware that enables communication between the wireless sensors and a 

centralized data repository.  These instruments are removed while the ship is in dry-dock 

at the Cascade General Shipyard in Portland, Oregon, after two months of combined 

seakeeping trials and port time.   

The flexural response of the Sea Fighter is measured by the wireless hull monitoring 

system using strain gauges.  Strain measurements are taken from preexisting metal-foil 

strain gauges (Micro Measurements) previously installed as part of the SPDAS 

seakeeping system during construction of the vessel.  Metal-foil strain gauges indicate 

changes in strain through a coupling of electrical resistance and mechanical strain 

(Window 1992).  Measurement of these changes generally requires power and 

conditioning circuitry (e.g., Wheatstone bridge and amplification) to convert the change 

in metal-foil resistance into a measurable analog voltage signal.  These circuits are 

already included in the SPDAS stamp enclosures that are installed with the strain gauges.  

The outputs of the SPDAS stamp enclosures located both below deck and in the 

superstructure above the mission bay are routed to bricks located throughout the ship.  At 

the SPDAS bricks, analog signals are converted into the digital domain, using on-board 

analog-to-digital converters, and sent via the shipboard local area network to the data 

repository situated below deck.  As a result, the output of the wireless sensors used to 



 

70 
 

record strain of the hull are installed close to the SPDAS hull monitoring system bricks 

where the voltage signal from the stamp enclosures are collected.  Eight strain gauge 

channels from Brick 19 are spliced in order to feed them into the wireless sensor nodes; 

the gauges selected for this study are physically located on Frame 20 (see Figures 3.5 and 

3.6).  The voltage output levels of the SPDAS strain channels are between 0 and 5 V 

which perfectly meet the input requirements for the Narada sensing interface.  

Preliminary tests of the SPDAS strain/Narada interface suggest some high-frequency 

noise contamination due to the splicing of the cable at the brick.  As a result, each strain 

gauge sensor channel is provided with a low-pass, four-pole, Butterworth filter, each 

having a cutoff frequency of 25 Hz, prior to the interface with the Narada nodes.  The 

 
Figure 3.5. Layout of metal-foil strain gauges on Frame 20 measured by the proposed 

hybrid wireless hull monitoring system. 
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filters are assembled on a solderless breadboard and installed in weatherproof enclosures 

with the wireless sensors (Figure 3.7a).  Four Narada wireless sensor nodes are used to 

record the eight strain measurements; each sensor node is configured to collect two 

channels of strain data. 

Acceleration is recorded using micro-electro-mechanical systems (MEMS) 

accelerometers installed throughout the mission bay (Figure 3.6).  Vertical-only 

acceleration measurements are collected using Crossbow CXL02LF1Z accelerometers.  

The CXL02LF1Z has an input range of ±2 g, a sensitivity of 1 V/g, a DC-offset of 2.5 V, 

an output range between 0 and 5 V, and a noise floor of 1 mg (RMS).  Crossbow 

CXL02TG3 ultra-low noise, tri-axial accelerometer arrays are also provided along the 

centerline of the ship.  The performance characteristics of the CXL02TG3 include an 

input range of ±2 g, a sensitivity of 0.833 V/g, a DC-offset of 2.5 V, an output range 

between 0.5 and 4.5 V, and a noise floor of 0.6 mg (RMS).  For temporary installation of 

 

Figure 3.6. Layout of the wireless sensing network divided into three subnets in the 
Sea Fighter mission bay. 
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accelerometers, mechanical connections such as screws are best so that the transducer is 

not damaged during removal.  Since drilling holes for screws in the deck is deemed 

unacceptable, accelerometers are instead screwed to 1.2 cm thick aluminum mounting 

plates that are securely bonded to the deck by epoxy (Figure 3.7b).  Protection of the 

accelerometers from crew activity is provided by rubber traffic cones placed over the top 

of the accelerometers and epoxied in place (Figure 3.7c).  The layout of the 

ut PSD, and ����n a regular grid pattern is intended to generate response data for 

analysis of the ship. 

A laptop computer that coordinates seakeeping data collection runs and archives 

wireless sensor data is installed below deck (in the hull’s machinery and tank space) in 

close proximity to the SPDAS data server.  This laptop controls the wireless sensor 

subnets through a pair of bridge devices (Figure 3.4).  A commercial wireless transceiver 

development kit (Texas Instruments CC2420DBK) is commonly used by a central data 

server to wirelessly communicate with the wireless sensor nodes.  The development kit 

 
 (a) (b) (c) 

Figure 3.7. Details of the wireless sensor installation on Sea Fighter: (a) Four-pole 
Butterworth filter with Narada nodes for strain gauge de-noising; (b) Accelerometer 
bonded to mission bay deck by epoxy; (c) Wireless sensor within an enclosure with 

directional antenna installed in the mission bay. 
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has a CC2420 transceiver (just like the Narada nodes) supported by an Atmel 

Atmega128 microcontroller for wireless communications.  The microcontroller is 

connected to a serial (RS-232) port and is configured simply to pass data from the serial 

port to the radio.   Similarly, data packets received from the wireless radio are read, 

reformatted, and sent out the serial port.  Unfortunately, in the proposed hull monitoring 

system, the laptop is not collocated within the compartment containing the wireless 

sensor nodes.  This requires use of the ship fiber-optic network to communicate data 

between the laptop and the wireless transceiver development kit placed in the sensors’ 

compartment.  To connect the transceiver to the Ethernet network, a commercial serial-

to-Ethernet converter box (Moxa Nport DE-311) is used as a bridge.  This connector is a 

very powerful device because its internal firmware allows it to appear to the laptop as a 

local serial port even though it is remotely located on the Ethernet network.  Hence, the 

Nport device driver handles all of the networking details when establishing 

communication between the laptop and the transceiver.  As shown in Figure 3.4, a total of 

three Nport converters are used to connect these wireless transceiver development kits to 

the network; each Nport/transceiver pair is packaged in a weatherproof container and 

installed in the mission bay.   

The layout of the transducers, sensing nodes and receivers within the mission bay is 

depicted in Figure 3.6.  Twenty Narada wireless sensing units, collecting the 8 channels 

of strain data and 20 channels of acceleration data, are organized into three subnets 

operating on three different IEEE 802.15.4 communications channels (channels 11, 24, 

and 26).  Dividing the wireless sensors into three subnets represents an efficient use of 

the wireless bandwidth which is critical for allowing reliable continuous data streaming 
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from the wireless sensor nodes during operation of the hull monitoring system.  These 

sensing units are allocated into the three subnets based on their location within the 

mission bay, as well as their functionality (e.g., strain versus acceleration data collection).  

Subnets 1 and 2 (denoted in Figure 3.6) include Narada sensing nodes measuring 

acceleration and have their receivers located forward in the mission bay.  Subnet 1 

contains two Narada sensing units collecting tri-axial acceleration near the center of 

gravity of the ship.  In addition, subnet 1 contains eight Narada nodes, each collecting 

uni-axial vertical acceleration.  Subnet 2 contains ten Narada sensing units collecting 

vertical acceleration from the forward part of the mission bay.  As previously mentioned, 

subnet 3 consists of four Narada nodes recording two strain channels each.  Because their 

communication distance is greater, directional patch antennas are used on sensor nodes in 

subnet 1 while omni-direction quarter-wave dipole antennas are sufficient for subnets 2 

and 3.  Subnet 3 is located aft of subnet 1 near SPDAS brick 19 with the receiver and 

Nport converter located nearby (see Figure 3.6). 

 

3.3.4. Data Collection 

The proposed hybrid wireless hull monitoring system is set to continuously collect 

hull response data and operate in an autonomous mode, without human intervention.  The 

Narada nodes are all set to collect data at a rate of 100 Hz.  To begin data collection, a 

start beacon is initiated by the laptop serving as network coordinator and is broadcast 

from the wireless transceiver boards servicing each sensor subnet.  Network 

synchronization is handled through this beacon.  Before the start command is transmitted, 

the Narada units are put in a wait state where their embedded microprocessors cycle 
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through four assembly instructions waiting for the server command.  Limiting the actions 

of the embedded OS in this way limits the discrepancy between processing times that 

may occur within the sensing nodes upon receipt of the beacon.  This practice effectively 

limits the synchronization error between nodes.  The upper bound on synchronization 

error in this system is defined by the sum of the difference in wireless propagation times 

from receiver to sensor (wireless signal path length divided by the speed of light) and the 

differential processing times for the beacon packet within the sensor.  Differential 

processing times may arise from stochastic delays in the fiber-optic network, wireless 

transceiver or within the microcontroller (Maróti, et al. 2004).  Observations made on the 

differential processing times (absolute value) between units (measured using a digital 

oscilloscope in the laboratory) yield a distribution with an average synchronization error 

of 10 µs, a variance of 8 µs, and peak observed value of 30 µs.   Assuming 1000 m in 

differential path length (the high end of the system’s communication range), the upper 

bound on the synchronization error from the beaconed network is less than 35 µs.  This 

error level is negligible when considering sampling in the low kHz range, or less.    

Once the system is time synchronized, data is then buffered within the wireless sensor 

nodes until 30,000 samples are collected.  After 300 seconds, the network coordinator 

queries the sensing units, one at a time, and requests the data in packets of 50 data points 

each.  Received packets are then archived in the data server.  Because the timing within 

each Narada wireless node is not exact (each sensor basis of time is derived from a 

crystal oscillator that exhibits slow drifts, thereby adding additional synchronization error 

as data collection progresses) the system is configured to stop collecting data every half-

hour so that the monitoring system can briefly resynchronize before it re-initiates its data 
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collection activities.  Oscillators on the Narada wireless sensing nodes operate at 8.0 

MHz and are rated to have stability of 2.0 parts per million (ppm) or better.  This level of 

stability yields a worst-case clock drift of 9 ms during the 30 minute inter-

synchronization periods. 

 

3.4. Results 

Results of this study are presented in this section in three parts.  First, data collected 

by the experimental wireless hull monitoring system is compared to data collected using 

the SPDAS wired hull monitoring system.  Second, wireless reliability of data transmitted 

in the experimental system is discussed.  Finally, results derived from modal analysis of 

the Sea Fighter are presented. 

 

3.4.1. Comparison of wireless hull monitoring system to SPDAS system 

Wirelessly collected data compares well to identical data collected by the SPDAS 

system.  On the strain channels where the Narada system and the SPDAS record the 

same signal, the signals recorded and archived are nearly identical.  Figures 3.8 and 3.9 

show strain comparisons between the Narada derived strain time histories and those 

recorded by the SPDAS system of strain gauges 2 and 3 (as numbered in Figure 3.5), 

respectively, measuring hog/sag bending of the twin-hull structure.  A slamming event 

(i.e., wave impact on the ship bow) is evident in Figure 3.9.  In addition, some minor 

spikes are evident in the Narada signal in Figure 3.9 (e.g., at time indices 304 and 306 

seconds) due to imperfect connections in the breadboard filter readings from the strain 
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Figure 3.8. Time history response of the ship hull (top) during rough seas (sea state 3) 
as measured by the Narada and SPDAS based hull monitoring systems (corresponding 
to strain gauge 2 in Figure 3.5).  The difference in the two measured time-histories is 

shown below. 

 
Figure 3.9. Strain comparison between strain measured at strain gauge 3 (in Figure 

3.5) by the SPDAS (top) and wireless (bottom) hull monitoring systems.  A slamming 
event is evident at 307 seconds in a transient vibration response. 
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gauge channel.  Vibrations and shock loadings generated at sea will affect the quality of 

these connections and corresponding noise levels.   Even at the higher levels though, 

noise levels are within acceptable limits.  Of the eight strain channels recorded by 

Narada, one of the strain gauges (or its associated power circuit) fails before the ship 

disembarked for its sea trials resulting in zero voltage levels recorded by both the SPDAS 

and the Narada systems for that channel (strain gauge 6).  Also, one Butterworth low-

pass filter fails during installation (strain gauge 7).  Hence, during the sea keeping trials, 

the wireless hull monitoring system has six operational channels of high-quality strain 

measurements (strain gauges 1 through 5 and 8 in Figure 3.5).  In general, the error 

between the wireless and wired strain readings is less than 0.03 µε (or about 5%), as 

shown in Figure 3.8. 

The Narada sensing nodes recording hull acceleration do not share a channel directly 

with the SPDAS hull monitoring system.  However, each system does have a tri-axial 

accelerometer located at the ship center-of-gravity (COG).  The wireless array is located 

on the top surface of the mission bay deck while the SPDAS tri-axial array is mounted 

directly beneath on the underside of the deck.  Comparison of the acceleration signals 

measured by these two accelerometers shows excellent agreement with errors less than 

0.5 milli-g (or about 1%; Figures 3.10 and 3.11).  Both noise level and time 

synchronization compare favorably between the two systems.  Even in the presence of a 

slamming event (see the zoomed-in time history of Figure 3.11), the fidelity between the 

two systems is excellent.  This result further demonstrates that the wireless sensing 

system can indeed operate independently of the wired monitoring system and collect 

high-quality data measurements. 
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Figure 3.10. Comparison of Narada center-of-gravity (COG) vertical acceleration 
measurement to that independently measured and recorded by the SPDAS system 

(top).  The difference in measured acceleration is presented below. 

Figure 3.11. Center-of-gravity (COG) response of Sea Fighter during a slamming 
event on the ship bow as measured by the SPDAS (top) and wireless (bottom) 

systems. 
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3.4.2. Wireless Reliability 

Wireless reliability is evaluated in terms of data packets delivered to the server over 

the wireless communication channels, not including the effects of data loss due to timing 

errors brought about by contention on the wired network.  Data loss is defined as data 

never received by the data acquisition coordinator.  It does not include data lost on one 

transmission, but successfully received on a retransmission as part of the wireless 

communication resend/acknowledge protocol.  In this regard, data delivery in the strain 

subnet (subnet 3) is very good.  The communications range for all Narada units 

measuring strain is relatively constant, approximately 3 m.  For these units, data loss on 

the wireless communication channel ranges from 0 to 3%.  It is worth noting that, during 

early testing, units exhibited poor performance when located very close to a metal 

bulkhead due to their increased exposure to signal reflections.  Moving them away from 

the bulkhead early in the voyage results in greatly improved reliability in subnet 3. 

On the other hand, subnets made up of acceleration-based Narada nodes include large 

variability in unit communication distances, multipath effects, and antenna 

configurations, providing very interesting results.  Subnet 1, which has communication 

ranges as far as 30 m, is equipped with directional, high-gain, patch antennas.  The 

directional antennas provide robust communications as a result of increased signal 

strength in the direction of desired wave propagation, reduced multipath effects, and 

increased clear distance between the antenna and the metal deck.  Data loss on the subnet 

1 wireless communication channel is between 0 and 5% during the transits under normal 

conditions.  Additional data loss occurs during some transient, adverse conditions.  For 

example, if the steel doors of the shipping containers in the mission bay are open in close 
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proximity to a wireless sensing node (within 0.5 m or less), the line-of-sight then between 

the sensing node and the receiver could be obstructed resulting in data loss as high as 

50%.  This result indicates that the gain in effective transmission range achieved through 

use of directional antennas comes at a cost of a loss in redundant wireless transmission 

paths.  In addition, one sensing node in subnet 1 located in a very high-traffic area is 

damaged catastrophically very early in the transit (the node is stepped on by a crew 

member) and subsequently, communicates only sporadically and returns corrupted data. 

Subnet 2 enjoys a shorter average distance between the receiver and sensing units 

than subnet 1, but sensors are equipped with omni-directional, quarter-wave dipole 

antennas.  Sensors in this subnet exhibit both the best and worst sustained communication 

loss rates observed during this study.  As a result of both the antennas and the geometry, 

data loss on the wireless channel (on average) is higher than the other two subnets due to 

a combination of range and multipath interference effects.  For sensors closest to the 

receiver, data loss is minimal, with about 0 to 1% of packets lost during the entire course 

of the study.  For the other sensors in subnet 2 that are farthest from the receiver, their 

data loss rate is as high as 7%.  In particular, two units performed particularly poorly 

(these units are later replaced to test if there is some hardware malfunction with no 

effect).  These units are physically closer to its receiver than the better performing units 

of subnet 1 but, due to its lower-gain, non-directed antenna, data loss is significantly 

higher.  Other units located nearly as far from the server, but with more advantageous 

positioning with regards to reducing negative multi-path, give much better 

communications results, with only 2% data loss over the course of the study.  A node by 

node list of wireless data delivery performance is presented in Table 3.1.  This data 
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corresponds to communication performance measured over a one-week period of 

seakeeping trials. 

 

3.4.3. Operational Deflection Shape Results 

Besides simple data collection, it is desirable to use the hybrid wireless hull 

monitoring system for system identification of the ship, which is the first step in many 

structural health monitoring applications (Doebling, et al. 1998).  Since wireless sensors 

have collocated memory and processing, they have the ability to process data as soon as it 

is collected (Straser and Kiremidjian 1998).  This practice has two main advantages: it 

eliminates the potential glut of unprocessed data that has been collected but is never 

analyzed, and it can alleviate bandwidth congestion if processed, low-bandwidth 

engineering results can be transmitted in lieu of high-bandwidth raw data.  In battery 

powered sensor networks, this practice also saves battery power as embedded computing 

consumes less power than does data transmission (Lynch and Loh 2006).  In this study, 

testing the ability of the wireless hull monitoring system to collect and archive vibrational 

Table 3.1. Percentage data loss, by unit number, in the wireless hull monitoring 
network. 

Unit 
Number 

Data 
Loss 
(%) 

Data 
Type 

Antenna 
Type 

 Unit 
Number 

Data 
Loss 
(%) 

Data 
Type 

Antenna 
Type 

10 1 Strain Omni  30 0 Acc. Omni 
11 1 Strain Omni  31 2 Acc. Omni 
12 3 Strain Omni  32 4 Acc. Omni 
21 4 Acc. Directional  33 2 Acc. Omni 
22 1 Acc. Directional  34 0 Acc. Omni 
23 3 Acc. Directional  35 1 Acc. Omni 
26 5 Acc. Directional  36 3 Acc. Omni 
27 Broken Acc. Directional  37 3 Acc. Omni 
28 6 Acc. Omni  57 2 Strain Omni 
29 7 Acc. Omni  60 0 Acc. Directional
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data is of primary interest, so the modal analysis is done offline (validation of embedded 

processing methods are presented in later chapters) using the Frequency Domain 

Decomposition (FDD) method (Brincker, et al. 2001). 

This study utilizes acceleration data from the wireless sensors and the FDD method to 

determine mode shapes from the identified modal frequencies.  In the FDD method 

developed by Brincker, et al. (2001), modal frequencies are determined from the peaks of 

the fast Fourier transform (FFT) of the recorded output response functions.  The method 

assumes that the input to the system is a stationary broad-band excitation (e.g., impulse or 

white-noise).  Singular value decomposition (SVD) is used to decompose the spectral 

density matrix at modal frequencies into single degree-of-freedom systems in the 

frequency domain.  By decomposing the system in the frequency domain, the FDD 

method is very useful in determining closely spaced modes.  To execute the FDD 

method, the power spectral density (PSD) matrix of the measured outputs, , is 

necessary.  The PSD matrix satisfies the input (x) and output (y) relationship: 

 (3.1)

where  is the input PSD, and  is the transfer function between the known 

output and the unknown input.  Since the input and transfer function are unknown, the 

following estimate of the output PSD  is used instead of  (Allemang 1999): 

 (3.2)

where  is the estimate of the output PSD at frequency  and  is an 

array of FFT values of the outputs at frequency .  The next step is to determine the 

SVD of the output PSD matrix: 
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 (3.3)

where  is the diagonal matrix of singular values at frequency , and  is the matrix of 

singular vectors. 

 (3.4)

The singular values indicate the relative amount of energy associated with each singular 

vector with the most energy at that frequency associated with the first singular value.  

Thus, from the first singular vector, an estimate of the mode shape at that frequency may 

be determined.   

 (3.5)

While the FDD method has been successfully implemented in a distributed fashion within 

a Narada wireless sensor network (Zimmerman, et al. 2008), due to the complicated and 

unknown nature of the ship structure, the FDD method employed in this study is applied 

offline. 

Mode shape determination from data collected aboard the Sea Fighter is particularly 

challenging due to the nature of the input to the system.  The input is highly colored, not 

broadband, and further influenced by the ship’s ride control system that mitigates the 

effects of the sea upon the vessel rigid-body dynamics.  Due to these difficulties, it 

cannot be stated with certainty that any frequency dependent deflection shapes identified 

from the data are indeed mode shapes, therefore the more technically accurate term 

“operational deflection shapes” will be referred to in lieu of mode shapes.  However, 

operational deflection shapes are known to be closely correlated to mode shapes.  One aid 

in the search for operational deflection shapes that are likely to be mode shapes is the 

presence of slamming events.  Slamming events act as impulse-like loads (i.e., nearly 
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broad-band) that excite all of the hull’s modes.  This effect can be seen in two frequency 

spectra identified from wirelessly collected acceleration data in the presence of and in the 

absence of a slamming event (Figure 3.12).  With a slamming event present, peaks in the 

response spectra at 2.2 Hz and 3.3 Hz are evident (Figure 3.12b); without those events, 

those peaks are extremely difficult to discern (Figure 3.12a). 

 
(a) 

 
(b) 

Figure 3.12. Response spectra of the Sea Fighter measured at accelerometer location 
35 (in Figure 3.6): (a) without slamming event, (b) with slamming event. 
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Figure 3.12 also shows that, regardless of the presence or absence of slamming events, 

the effect of the predominant wave period dominates the response spectra.  Throughout 

the transit, wave periods are measured by the TSK wave height sensor at approximately 

5.0 s which corresponds to the peak in the response spectra at 0.2 Hz.  If the peaks at 2.2 

and 3.3 Hz do represent flexure modes of the hull, they should be invariant despite 

changes in ship speed and wave period.  Furthermore, if the peak at 0.2 Hz is due to the 

wave loading, it should vary with wave period.  While variance in the wave period at 0.2 

Hz is relatively small, there is some variance over the course of the transit.  There is 

however, almost no variance in the resonant frequencies near 2.2 and 3.3 Hz.  The 

location of the dominant peak in the frequency spectrum (near 0.2 Hz), on the other hand 

is variable, and strongly correlated to the wave period and ship speed.  Specifically, that 

period is correlated to wave period and the inverse of ship speed.  The correlation 

between spectra peak period and the seaway wave period is plotted in Figure 3.13 (a).  

The linear regression between the wave period and main peak period is almost one-to-one 

Figure 3.13. Correlation of identified spectra peak period to wave period using data 
collected during the transit between Long Beach and San Francisco. 
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(slope = 1.0366) while it is nearly uncorrelated (slope = -0.0041 and slope = 0.0002, 

respectively) for the 2.2 and 3.3 Hz peaks. 

As shown in Figure 3.14, the two operational deflection shapes calculated using FDD 

at 2.2 and 3.3 Hz correspond to torsion and hog-sag modes of the ship, respectively. It 

should be noted that the accelerometers interfaced to the wireless hull monitoring system 

correspond to the central section of the ship.  However, the SPDAS hull monitoring 

system has accelerometers at the four corners of the ship, as well as at the ship center of 

gravity, which would provide a more comprehensive view of the global operational 

deflection shape. The operational deflection shapes obtained by applying FDD to the 

combined acceleration measurements from the experimental hybrid wireless system and 

the SPDAS hull monitoring system (time synchronized in post-processing using the COG 

acceleration measurement as a reference) are shown in Figure 3.15. The two operational 

deflection shapes obtained from the combined data set help to confirm the findings 

obtained by the wireless hull monitoring system alone. 

 

3.5. Field Validation Conclusions 

For this study a wireless sensing network, based on the Narada wireless sensor 

developed in Chapter 2, is installed and tested on the FSF-1 Sea Fighter during its transit 

from Panama City, Florida, to Portland, Oregon.  Twenty Narada sensors recording 

twenty-eight channels of strain and acceleration data are installed on three subnets in the 

Sea Fighter mission bay.  These sensors communicate with receiver boxes that are 

interfaced with the existing shipboard Ethernet network via serial-Ethernet converters 



 

88 
 

that abstract the networking details from the network coordinator.  The network 

coordinator server is below deck and is accessed via remote desktop from the ship’s 

secure communications room as well as from the bridge.  This experimental validation of 

 
Figure 3.14. Operational deflection shapes determined from Narada collected 

acceleration data. 
 

 
Figure 3.15. Operational deflection shapes determined from combined Narada and 

SPDAS collected acceleration data. 
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a hybrid sensing network composed of wired and wireless tiers demonstrates the value of 

combining the strengths of both technologies in a single system.  Wireless sensors are 

used to collect hull response data from transducers located throughout a ship’s 

compartment.  Once consolidated at a receiver box, a high-bandwidth wired system 

carries the sensor data through bulkheads to a central repository below deck. 

Wirelessly collected data compares well with data collected by the wired system.  

Comparisons between the strain signals recorded by the SPDAS monitoring system and 

the proposed hybrid wireless hull monitoring system show little difference between the 

two.  Errors observed are, on average, in the range of 0.023 micro-strain, RMS.  In these 

cases, the SPDAS and the proposed wireless hull monitoring systems share use of the 

same transducers.  Comparisons of acceleration data between the SPDAS and the 

proposed wireless hull monitoring systems (each collecting data measured from 

independent transducers) also show very good agreement, with representative errors less 

than 50 µg, RMS.  These results demonstrate the high-fidelity of the hybrid wireless hull 

monitoring system. 

Data is transmitted successfully with little data loss due to use of a robust 

send/acknowledgement protocol when wirelessly communicating.  The reliability results 

obtained in this study demonstrate that high quality wireless communication can be 

achieved in the shipboard environment, but a number of factors influence success and can 

greatly impact the quality of the wireless communication system.  The most critical 

component in most wireless applications is transmission power (strongly correlated to 

range), but in many shipboard applications, compartments are small enough that range is 

not a factor.  However, the mission bay, which is nearly 60 m long, is an exception.  Just 
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as important as range on Sea Fighter (and likely more important on vessels lacking large, 

open bays) are multipath effects.  Multipath effects can be harmful as well as helpful.  

They are harmful when primary and secondary transmission waves reach a receiver 

antenna simultaneously, resulting in decoding errors by the wireless receiver.  Negative 

multipath effects are significantly alleviated on subnet 1 by use of directional antennas.  

However, some of the useful aspects of multipath effects are mitigated as well including 

the provision of redundant signal paths that can overcome transient conditions such as 

physical obstructions along the primary line-of-sight pathway between transmitter and 

receiver.  Wireless sensors located near their receivers or those that used directional 

antennas performed extremely well in the sea trials.  Sensors relatively far from receivers 

using omni-directional antennas did not perform as well, suggesting that wireless 

communication issues arose as a result of a combination of range and multipath effects.  

Greater use of directional and high-gain antennas (where appropriate) and power 

amplified radios will improve performance where data loss is an issue.  Creating clear 

space, wherever possible, between decks (or bulkheads) and the antennas attached to the 

Narada nodes, will also help in improving the reliability of the wireless channel.  As 

such, this study identifies sensing node placement, receiver placement, and antenna 

selection as non-trivial tasks in shipboard installations.   

Improvements in communication can be accomplished by taking advantage of 

additional board features and additional testing.  One feature of the CC2420 wireless 

modem employed by the Narada wireless sensor is that it returns to the microcontroller a 

measurement of the received wireless signal strength whenever it decodes a packet.  This 

information can be used to provide to the network a real-time map of network reliability 
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given transient conditions.  This information can be used at the time of installation to 

optimize sensor node location and antenna orientation for maximum performance.  

Second, leveraging the computational abilities of the sensor for embedded data 

processing can greatly improve robustness and reliability of the wireless communication 

channels as well as save battery power (where necessary) as data transmission is an 

energy intensive operation for the wireless unit (Lynch, et al. 2004).  Even so, some level 

of interference and lost data packets is inevitable; therefore, reduction of the sensor 

channel load per communication channel to a conservative level (below the theoretical 

upper limit) is important to help ensure system reliability.  In this environment, ten sensor 

channels per communication channel streaming data collected at 100 Hz is identified as a 

practical upper limit.  Distributed over the sixteen communication channels defined by 

the IEEE 802.15.4 communication standard, this practice would limit the sensor count to 

160 sensor channels.  However, with adequate spatial separation and signal blocking due 

to bulkheads, these channels may be employed in different zones of the vessel without 

interference.  Furthermore, since communication of raw data over the wireless 

communication channels consumes a large amount of bandwidth and is a practice that 

scales poorly as sensor networks grow in size.  Communicating a reduced set of 

processed data alleviates stress on the available bandwidth, thereby increasing the time 

window available for multiple, robust resend/acknowledge protocols to help ensure that 

data is delivered. 

Future work should include even larger sensor networks, defined by hundreds of 

sensor channels with both greater physical resolution and scope (i.e., a denser sensor 

network located throughout the entire length of the ship).  Greater reliance on embedded 
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data processing will alleviate demand on the crowded wireless communication band, 

increase system scalability, and reduce the system’s reliance on the data servers that serve 

as potential single points of failure.  The use of wirelessly collected acceleration data for 

modal analysis of the ship demonstrates the value of the hull response data.  Leveraging 

the ability of wireless sensors to serve as a platform for economical, high-density sensing 

networks can also help in making automated ship-board hull health monitoring systems a 

reality.  
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CHAPTER 4 

 

STRUCTURAL MONITORING AND LOAD ESTIMATION OF WIND 

TURBINES USING WIRELESS SENSOR NETWORKS 

 

Monitoring of alternative energy generators such as wind turbines is becoming 

increasingly critical; however, acquisition of the dynamic output and load data can be a 

time-consuming and difficult process.  At the same time, new off-shore and deep-water 

turbine installations are pushing the bounds of current turbine designs as towers increase 

in height, and push the limits of the industry’s knowledge with regard to loading in these 

unique environments.  In such cases, monitoring becomes doubly important, both to 

characterize structural performance of the turbine, and to build a statistical database of 

environmental loads acting on the structure over time.  In recent years, low-cost wireless 

sensors have emerged as an enabling technology for structural monitoring applications.  

In this chapter, the wireless sensor network developed in Chapter 2 and field validated in 

Chapter 3 is installed in three operational turbines in order to demonstrate their efficacy 

in this unique operational environment.  Data collected from these turbines is used for 

validation of a novel model-assisted load estimation algorithm developed for autonomous 

execution within a wireless sensor network.   
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4.1. Introduction of Load Estimation 

One of the most critical elements in the design of any new structure is the proper 

development of design loads.  Design loads depend on the structure’s composition, 

location, as well as intended function, and are based on physics, historical loading data, 

and professional experience.  Design load guidelines developed by a consensus of 

professional opinion have been codified for use by the design engineer (ASCE 2005; ICC 

2006).  For stochastic loads, particularly wind and seismic loads, the profession’s 

collective database of historical load information is particularly vital to development of 

appropriate design loads (loads that are neither under nor overly conservative).  As novel 

and innovative structures (e.g., very tall buildings or wind turbines) are developed in 

increasingly challenging environments (e.g., offshore), it becomes necessary to add new 

loading data representative of these novel. 

Direct measurement of lateral loads is often quite challenging.  Seismic events can be 

indirectly captured by recording ground acceleration from which the effects of the 

recorded seismic movement may be inferred.  However, the characterization of wind 

loads imposed on structures is a difficult problem to solve (Schueeller, et al. 1983), 

particularly in large wind farm arrays and off-shore applications (Veers and Butterfield 

2001; Butterfield, et al. 2009).  In wind turbine applications, wind measurements taken at 

ground level do not accurately represent the conditions that occur at the level of the 

nacelle or blades, thus meaningful measurements must be taken from sensors located 

many meters above the ground.  Wind sensors (i.e., anemometers) located on the tower 

itself can be helpful in load estimation, but due to the fact that turbines are designed to 
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“face” the wind, anemometers on the tower can only measure wind that has already been 

disturbed through its interaction with the turbine blades.  Passive measurement towers 

may be constructed upwind from the turbine and can provide a reasonable, undisturbed 

measurement of the wind conditions (e.g., speed, direction, temperature, and density) at 

appropriate heights above the ground.  Unfortunately, such towers represent a significant 

expense.  Furthermore, large wind farms, defined by many turbines arranged in multiple 

rows, will require a large number of sensor towers that can adequately capture the 

complex loadings that occur due to turbine interactions via turbulence and wake effects 

(Hau 2006).   

Recently, a variety of new sensor solutions have been proposed for wind 

measurements in the wind energy arena.  One innovative sensing technology viable for 

spatial sensing of wind conditions in wind farms is atmospheric light detection and 

ranging (LIDAR) mapping (Smith, et al. 2006).  LIDAR operates on the principles of 

scattered light to estimate wind speed, direction, and density (Yoe, et al. 2003).  While 

capable of measuring wind conditions as far away as 10 km, LIDAR can be an expensive 

device to obtain.   

These constraints make potential load estimation using the vibrations of the turbine 

structures themselves an attractive prospect.  This form of load measurement takes 

advantage of the existing structure as a sort of “load sensor”.  Load estimation from the 

measured response of mechanical and civil structures has been an active area of research 

as far back as the 1980s (Stevens 1987).  Observer based methods for extracting loads on 

rotating machinery have been investigated by Gibson and Stein (1996) as well as Kim, et. 

al. (2006).  These methods have been advanced to estimate unwanted loads (i.e., 
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disturbances) in the control community for devices under feedback control (Abidi, et al. 

2004; Ronkanen, et al. 2007; Nurung, et al. 2009).  In addition, impact load estimation of 

passive systems (e.g., aircraft wings) has been studied by Liu, et al. (2000).  In the civil 

engineering community, load estimation methods have been developed for stochastic 

loads including bridge traffic (Yu and Chan 2007), stadium crowd loading (Ellis and 

Littler 2004), as well as wind loads on roofs (Uematsu, et al. 1996; Uematsu, et al. 2001), 

shells (Li and Tamura 2005), towers (Ma, et al. 2003; Law, et al. 2005; Hwang, et al. 

2009), buildings (Hwang, et al. 2009), and wind turbine blades (White, et al. 2009).   

Extracting loading information from structural response necessitates the use of some 

model of the structure.  High fidelity finite element models such as those used by 

Uematsu, et al. (1996; 2001) can provide good results but are impractical for embedment 

in resource-constrained wireless sensor networks.  Furthermore, this method and other 

methods using reduced complexity models (Ma, et al. 2003; Law, et al. 2005; White, et 

al. 2009) assume that very accurate models that reflect the true dynamics of the structure 

(including environmental effects) are available.  Hwang, et al. (2009) present methods 

that take modeling uncertainty into account through use of the Kalman filter to minimize 

error.  However, the method presented in this chapter attempts to address this issue more 

directly, by developing a wind load estimation algorithm that includes an explicit system 

identification step to update a model of the structure online, then uses that updated model 

to make the input force estimation.  Furthermore, the method relies on a frequency-

domain structural model that is both computationally undemanding (relative to high-order 

finite element models) in order to allow it to be embedded in low-power wireless sensing 
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nodes, and is based on the physical parameters of the structure so as to restrict it to 

realistic models. 

 

4.2. Application to Wind Turbines 

Due to their importance and exposure to wind loadings, wind turbines are identified 

as an ideal subject for this study.  With the recent rise in public consciousness regarding 

renewable and carbon-neutral energy sources, wind energy is gaining popularity as 

perhaps the most technologically developed and practical alternative energy source 

available today.  Recent studies put the annual wind energy generation capacity of the 

United States at 11,575 megawatts (Leopold 2007) with a growth rate of 30% annually 

(Southern 2007).  Technological improvements (e.g. larger, more powerful generation 

turbines) and federal tax subsidies have increased investment in wind energy technology 

to the point where 33 states host sizable wind farms, 19 of which are significant with 

capacities over 100 MW (DOE 2006).  Despite those accomplishments, wind energy only 

accounts for 0.8% of the United State’s total energy supply (Leopold 2007).  This number 

pales in comparison to other developed nations such as Germany which already realizes a 

full 7% of its energy supply from wind (Wiser and Bolinger 2007).  By substantially 

increasing its wind power capacity, the United States could drastically reduce its own 

carbon emissions by as much as 2 billion tons by 2050, if it were to generate 20% of its 

energy by wind (DOE 2006).  

Improvements to the cost/benefit ratio of wind turbine construction can come through 

the aggressive pursuit of efficient turbine designs.  Longer and lighter blade designs using 

novel materials (e.g., fiberglass composites) will yield better performance (Schulz and 
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Sundaresan 2006).  Frequently reversing wind loads and blade orientation with respect to 

gravity subject blades to high levels of fatigue that have the potential to cause sudden 

failure (Pitchford, et al. 2007).  Typically, blades experience damage requiring repair or 

even replacement, on average, five times per year (Rolfes, et al. 2006), a fact that 

negatively affects the long-term profitability of wind turbines.  In addition, undetected 

damage can propagate into sudden and catastrophic failure.  A sheared blade presents a 

substantial risk to anyone on the ground and unbalances the entire nacelle, potentially 

resulting in damage to internal gears and the energy plant (Schulz and Sundaresan 2006).  

For example, an on-shore turbine experienced sudden blade failure in Dunbar, Scotland 

in 2005, resulting in £1.25 million in repair costs and significant downtime (Tweedie 

2005).  Other reported damage mechanisms in wind turbines include corrosion 

(particularly for turbines sited near bodies of salt water), foundation failures, and fatigue 

cracking in the steel turbine tower (Hau 2006).  As future wind farms go off-shore, 

damage may not be detected as promptly, resulting in more extensive damage, longer 

downtimes, and reduced profitability. 

Installation of sensors, whether temporary or permanent, can provide turbine response 

data from which the wind energy field can greatly benefit.  First, data pertaining to the 

dynamic response of turbines exposed to wind and wave loads (as in the case of off-shore 

turbines) may be collected.  Such data can be used to better understand the behavior of 

turbines under complex loading scenarios.  Fused with an analytical model of the 

structure, such data may also yield information related to the loading to which these 

structures are subjected (as will be the subject of this chapter).  The end results are 
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improved analytical models and a statistical database of loading data; both results would 

lead to more cost-efficient design procedures for future turbine systems. 

Permanently installed sensors can also serve as the basis for a structural health 

monitoring (SHM) system.  Such systems would provide turbine owners with data from 

which damage could be detected and quantified.  Early warning of damage can lower the 

cost of repairs and reduce turbine downtime; the result is an increase in the long-term 

profitability of wind energy.  While the many benefits provided by monitoring are 

evident, few operational turbines have extensive sensor instrumentations due to cost 

restrictions.  With cable-based monitoring systems being challenging and costly to install, 

alternative sensor technologies should be considered.  Furthermore, installation of dense 

sensor arrays in turbine blades are restricted by the availability of data communication 

lines in the turbine slip ring.  In particular, wireless sensors are considerably less-

expensive to purchase and easier to install than traditional cable-based systems (Lynch 

and Loh 2006).  In the case of turbine blades, wireless communication eradicates a need 

to move data through the slip ring interface, which can be technically difficult as well as 

costly.  Furthermore, wireless sensors may be rapidly installed for temporary installation 

in turbine towers should the need arise.  Indeed, a preliminary study applying a wireless 

module to a fiber optic sensor interface installed in the blades of a research wind turbine 

structure returned very promising results demonstrating the usefulness of wireless sensors 

for overcoming the connectivity challenges at the slip ring (Turner, et al. 2009). 

In this study, a wind load estimation algorithm for embedment in a low-power, 

wireless sensor network (Narada, introduced in Chapter 2) is developed and 

experimentally verified in the laboratory and demonstrated using data wirelessly 
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collected in the field from operational wind turbines.  The objectives of this study are to: 

1) employ high-quality turbine response data for load estimation of operational turbines 

based on the response of the structure; 2) illustrate the utility of wireless sensors in wind 

turbines; and 3) quantify the wireless communication reliability in turbine applications.  

This chapter begins with a conceptual method that can estimate structural loading from 

measured vibrational response.  The method is intended to be computationally efficient to 

ensure that it fits within the computational platform integrated with the Narada wireless 

sensor node.  A description of a laboratory study follows in which a turbine analog is 

subjected to a known loading, the response measured by wireless sensors, and a model-

assisted loading estimation algorithm employed for load characterization.  A controlled 

laboratory environment with a measurable input force is critical for validation of the 

method.  Finally, to illustrate the utility of wireless sensors installed in wind turbines, the 

proposed sensor technology is installed in three operational turbines in Germany.  The 

load estimation method is also applied to turbine response data obtained from the 

operational turbine structures tested. 

 

4.3. Model-Assisted Load Estimation from Output Measurements 

The measured responses of a structure to wind loading can be thought of as outputs, 

Y(jω), to a dynamical system with a linear transfer function, H(jω), and the wind force as 

the input, represented at a point by W(jω).  The turbine structure acts as a linear filter of 

that wind signal, effectively coloring the input signal and producing the measured 

outputs, Y(jω) (Figure 4.1).  The measured vibrations of the structure will be dependent 

on the wind loading W(jω), the structural properties of the tower (encapsulated in H(jω)), 
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as well as by the properties of the blades and the gyroscopic rotation of the blades that 

introduce a lateral force, S(jω).  Here, a model-assisted method is proposed for estimating 

the loading on the tower portion of the turbine structure, U(jω), from the response 

outputs, Y(jω).  The method seeks to develop a model of the turbine that can be used to 

identify the loading as seen by sensors located within the tower (as the space within the 

turbine tower is significantly more accessible than the space within the blades).  This 

loading estimate includes the effect of the wind as well as the lateral loads created by the 

rotation of the turbine blades, represented in Figure 4.1 as a disturbance to the system. 

In this study, a model of a turbine as a tapered cantilevered Bernoulli-Euler beam 

with hollow circular cross section and eccentric tip mass with rotational inertia, will be 

identified (Figure 4.2).  Loading on the turbine model will be assumed to occur as a point 

load acting on the tip mass; structural parameters to be estimated are depicted in Figure 

4.2.  With the model of the system defined, the loading input can be measured from an 

arbitrary output according to the transfer function: 

ܷሺ݆߱ሻ ൌ ܻሺ݆߱ሻ
ሺ݆߱ሻ (4.1)ܪ

 
Figure 4.1. Block diagram depicting turbine input/output system. 
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The transfer function model of the structure used in this study is derived in state-

space from the modal frequencies and modes shapes and converted to the transfer 

function form of Equation 4.1 (Chen 1999).  For a system with n degrees of freedom 

(DOFs) and p measured outputs, the state-space representation is based on an 2n 

dimensional state vector, x(t), composed of lateral displacements and velocities of the 

tower degrees-of-freedom (DOF) coinciding with sensor locations, plus one additional 

DOF collocated with the tip mass at the top of the structure (if no sensor exists there): 

ሶࢠ ሺݐሻ ൌ ሻݐሺࢠ   ሻݐሺݑ
ሻݐሺ࢟ ൌ ሻݐሺࢠ   ሻݐሺݑࡰ

ሻݐሺࢠ ൌ ሾ࢜ሺݐሻ ሶ࢜ ሺݐሻሿ 
(4.2)

Here, ࢜ሺݐሻ߳Թൈଵ is the lateral displacement vector of the system DOFs, ߳Թଶൈଶ is the 

system matrix, ߳Թଶൈଵ is the input matrix, ߳Թൈଶ is the output matrix, and ߳ࡰԹൈଵ 

 
Figure 4.2. Wind turbine model to be identified. 
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is the feedthrough matrix.  For systems employing acceleration measurements, assuming 

that there is one input that is located at the top DOF, the state-space matrices are: 

 ൌ 
ሾሿ ሾࡵሿ

ሾെିࡹଵࡷሿ ሾെିࡹଵࢊሿ൨,  ൌ 
ሾሿ

ሾିࡹଵࢀሿ൨, ࢀ ൌ

ۏ
ێ
ێ
ێ
ۍ
0
0
0
ڭ
ے1

ۑ
ۑ
ۑ
ې
 (4.3)

where ߳ࡹԹൈ is the mass matrix for the structure, ߳ࡷԹൈ is the stiffness matrix, 

 Թൈ is the damping matrix.  In addition the observation matrix, C, defines the߳ࢊ

sensor outputs; assuming the sensors are accelerometers, then C is composed of the rows 

of A corresponding to the DOFs at which accelerometers are placed.  Similarly, D is 

composed of the rows of B corresponding to the DOFs at which accelerometers are 

placed. 

Identification of the unknown terms of A in Equation 4.3 is the result of an on-line 

modal analysis algorithm.  If the modal frequencies and mode shapes can be identified, 

then terms of the A matrix can be approximated using: 

ሾିࡹଵࡷሿ ൌ ሾࢶሿሾષሿሾࢶሿିଵ 
ሾିࡹଵࢊሿ ൌ ܽଵ  ܽଶሾିࡹଵࡷሿ (4.4)

where Φ is a matrix whose columns are the identified mode shapes (i.e., eigenvectors) 

corresponding to the chosen degrees-of-freedom of the structural model, ષ is the spectral 

matrix corresponding to the eigenvalues of the structure (estimated from the structure’s 

modal frequencies), and a1 and a2 are Rayleigh damping coefficients as described in 

Caughey (1960).  The state-space representation may be converted into the transfer 

function representation for the ith output of Equation 4.1 by: 
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ሺ݆߱ሻܪ ൌ ଶࡵሺ݆߱ െ ሻିଵ   (4.5)ܦ

where  and ܦ correspond to the ith row of C and D respectively.  Finally, in order to 

formulate the state-space model, accurate modal frequencies, mode shapes, and mass 

estimations are necessary.  As it is often difficult to extract true modal frequencies and 

mode shapes from output-only data sets in which the unknown input is non-white, these 

parameters will be estimated from a model based on the assumed modes method.   

 

4.3.1. Assumed Modes Method 

The assumed modes method (AMM), proposed by Merovitch (1986), is an energy-

based, approximate method for determining modal frequencies and mode shapes of 

continuous beams, and is quite useful because it requires neither the solution of a fourth-

order beam bending equation, nor knowledge of the natural (non-essential) boundary 

conditions of the beam (Merovitch 1986). The method works by creating “mass” and 

“stiffness” matrices, ࡹ෩  and ࡷ෩  respectively, based on kinetic energy and potential energy 

approximations that are in turn based on an assumed set of continuous user-defined basis 

functions, q(x).  Rather than defining the relationship between forces and displacements, 

as standard mass and stiffness matrices do, AMM “mass” and “stiffness” matrices define 

the relationship between elements of the user-defined basis functions.  These basis 

functions must satisfy the geometric (essential) boundary conditions of the beam as well 

as form a complete basis for the fourth-order beam bending equation. For the cantilever 

beam of Figure 4.2, the geometric boundary conditions that must be satisfied are: 
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ሺ0ሻݍ ൌ 0, 

 ௗሺሻ
ௗ௫

ൌ 0 
(4.6)

Satisfying those conditions, the basis functions may be superimposed to represent any 

arbitrary, reachable deformation pattern for the beam, in the same way that mode shapes 

may be superimposed for the same purpose.  As such, there exists a linear combination of 

these basis functions to represent all possible beam deformation patterns, including the 

full set of mode shapes (Merovitch 1986).   It is also important to stress that, while the 

mode shapes form a basis for the representation of the deformation of a beam taking into 

account its full set of boundary conditions (both geometric and natural), the AMM basis 

functions form a basis for the representation of the deformation of an arbitrary beam 

satisfying only the geometric boundary conditions.  As such, any set of basis functions 

that satisfies the geometric boundary condition and completeness constraints will suffice.  

The set of basis functions used in this study satisfies the completeness requirement for a 

fourth-order differential equation, as demonstrated by Storch and Strang (1988), and is 

represented by:   

ሻݔଵሺݍ ൌ  ,ଶݔ

ሻݔଶሺݍ ൌ 1 െ cos ቀగ௫


ቁ,  ݍଷሺݔሻ ൌ 1 െ cos ቀଶగ௫


ቁ, ݍ ,ڮሺݔሻ ൌ 1 െ cos ቀሺିଵሻగ௫


ቁ 
(4.7)

Here, L corresponds to the height of the cantilever and x is the length variable along the 

cantilever height.  An infinite number of basis functions are necessary to represent the 

complete set, though a smaller number may be used to identify modes of interest.  The 

AMM generates one mode shape for every basis function employed (the size of the ࡹ෩  
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and ࡷ෩  matricies are also equal to the number of basis functions employed).  The AMM 

“mass” and “stiffness” matrices based on these basis functions come from the kinetic and 

potential energy equations (respectively) associated with the basis functions: 

෩,ܯ ൌ  ߩ
 ݔሻ݀ݔሺݍሻݔሺݍሻݔሺܣ  ܮሺݍ݉  ݁ሻݍሺܮ  ݁ሻ  ܬ ௗሺሻ

ௗ௫
ௗೕሺሻ

ௗ௫
 , 

෩,ܭ ൌ  ሻݔሺܫܧ ௗమሺ௫ሻ
ௗ௫మ

ௗమೕሺ௫ሻ
ௗ௫మ ݔ݀

   
(4.8)

Here, EI(x) is the flexural rigidity of the cantilever, ρ is the mass density of the material, 

A(x) is the area of the cross-section, and m and J are the mass and rotational inertia of the 

tip mass respectively.  The generalized eigenvalue problem of the ࡹ෩ ෩ࡷ ,  system can be 

formulated: 

෩ࡹ ෩ ൌ ෩෩ࡷ ષ෩  (4.9)

where the matrix ષ෩ , whose diagonal elements are the eigenvalues (modal frequencies 

squared), and the matrix ෩ , whose columns contain the linear combination scaling 

factors for the basis functions necessary to compute the continuous mode shape 

associated with the modal frequency represented in the corresponding column of ષ෩ .  In 

this way, any number of mode shapes may be determined equal to the number of shape 

functions used.  The complete set of infinitely many shape functions represents an exact 

solution, though it is not necessary to use an infinite number of basis functions in the 

analysis.  It is recommended to use at least twice as many shape functions as the number 

of modes of interest based on the convergence properties of the method (Merovitch 

1986). 



107 
 

The modal frequencies and mode shapes are thus determined by the assumed 

structural properties (e.g., E, I, ρ, A, etc.) used to form ࡹ෩  and ࡷ෩  (by Eqn. 4.8).  In this 

study it is assumed that these values are not known exactly but are only known within 

some range.  Therefore values within the candidate range must be selected by the 

embedded algorithm.  To accomplish this task, a comparison between the operational 

deflection shapes (ODS), generated from output-only sensor data, and the mode shapes, 

generated by the AMM model, is made and the structural parameters that minimize the 

error between the two are used.  This numerical global error minimization is 

accomplished using a simulated annealing algorithm previously developed for Narada in 

another study (Zimmerman and Lynch 2009). 

 

4.3.2. Model Updating Step Using Simulated Annealing 

Simulated annealing is a numerical method devised to search a parameter space for 

the combination of assignments to those parameters that minimize a given error or cost 

function (Kirkpatrick, et al. 1983).  It is a mathematical analog for the annealing process 

by which physical materials achieve an optimal thermal state as they cool (Metropolis, et 

al. 1953).  The method is an iterative process by which the parameters are treated as 

random variables and random assignments to those random variables are made.  Often, 

the assignments yielding the smallest cost function values are retained for the next 

iteration.  However, at each step there exists a random chance that suboptimal 

assignments will be selected; this practice is to help the algorithm avoid convergence on 

local minima.  During the next iteration, the random variables are reassigned and a new 

set of assignments is generated.  This process is repeated as a numerical analog for 
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temperature is reduced.  This temperature analog defines the number of suboptimal 

solutions that are accepted by the algorithm.  By decreasing the temperature analog 

slowly, the global minimization of the error function may be determined from many local 

minimums (Kirkpatrick, et al. 1983).  The process continues until no new assignment sets 

are accepted at a given temperature step and the process is essentially “frozen”.  The 

simulated annealing process has the advantage that it parallelizes well to multiple 

processors (due to branched processes and low memory requirements) to take advantage 

of networked computing resources such as those found in wireless sensor networks 

(Greening 1990).  Furthermore, it has been previously validated on the Narada wireless 

sensor network by Zimmerman and Lynch (2009) and demonstrated to be effective for 

model updating of civil structural systems. 

For load estimation of wind turbines, the simulated annealing algorithm is used to 

solve for the realization of the structural parameters that minimizes the error between the 

AMM of the previous section, and the operational deflection shapes (ODS) identified 

using the frequency domain decomposition (FDD) method previously detailed in Chapter 

3 and implemented in the Narada wireless sensor by Zimmerman, et al. (2008).  The 

ODS are based on the output-only power spectral density matrix corresponding to the 

measured output signals.  It should be noted that they are not true mode shapes, but for 

fairly broad-band excitation, they are closely correlated to mode shapes.  However, they 

do represent the best estimate of mode shapes available from the data taking into account 

the non-white nature of the unmeasured input.  The comparison between the AMM 

modes and the FDD operational deflection shapes is made based on modal assurance 

criterion (MAC) which takes the length of the projection of one potential mode shape 
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onto another, and varies between zero (indicating no similarity between shapes) and one 

(indicating that the shapes are scaled versions of each other) (Allemang and Brown 

1982).  Also included in the objective function is a measure of peakness that penalizes 

solutions that generate models with modal frequencies not occurring at or near peaks of 

the measured output spectra.  The peakness measure, p(ω), is generated for every discrete 

frequency point in the output FFT calibrated within a range around the point: 

ሺ߱ሻ ൌ
∑ |ܻሺ߱  ݇ · ݀߱ሻ|

ୀି
∑ |ܻሺ߱  ݇ · ݀߱ሻ|ଷ

ୀିଷ
 (4.10)

where r is a peakness radius and is set depending on the closeness of the peaks in the 

output spectra; in this study, r is set to 8.  The peakness functions are calculated from the 

sensor data collected by the wireless system and averaged over the full set of sensor data 

to produce global peakness function that varies from near zero (no peak) to one (the 

largest peak measured).  The objective function minimized by the simulated annealing 

function also includes a first modal frequency term to penalize solutions that yield 

unrealistic frequencies of the primary structural mode.  This term does require an a priori 

estimate of the first structural mode, but this value is generally available from the turbine 

manufacturer or can be accurately estimated from rough structural parameters.  In this 

study, the modes with frequencies falling below the Nyquist frequency of the collected 

output data are used in the objective function.  If m modes occur below the Nyquist 

frequency, the objective function (ࣩ) is: 

ࣩ ൌ ଵݓ
|߱ଵ െ ෝ߱ଵ|

߱ଵ
 ଶݓ ሺ1.0 െ ሻܥܣܯ



ୀଵ

 ଷݓ ሺ1.0 െ ሺ߱ሻሻ


ୀଵ

 (4.11)
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where ߱ଵ is the a priori estimate of the first modal frequency, ෝ߱ଵ is the first modal 

frequency generated by the AMM model, and w1, w2, and w3 are weighting values.  The 

selection of the weighting values requires some engineering judgment, but a w1 weight 

that is at least two times the magnitude of the largest of w2 or w3 will ensure that the 

simulated annealing algorithm returns a model with a close first modal frequency match.  

To aid in convergence, the parameter search space is restricted to a realistic range around 

the suspected true value.  That is to say, true parameter values are estimated and, 

depending on the degree of confidence in their estimate, the search space is restricted.  

The model updating algorithm is thus given more leeway in making assignments to less 

well characterized parameters, but never more than 50% deviating from the estimated 

value. 

The mode shapes and modal frequencies produced by the AMM model using 

parameters identified by the simulated annealing process are used to identify the 

combined mass/stiffness and mass/damping terms in Equation 4.4.  The simulated 

annealing method also yields the tip mass that is the final term in B and D in Equation 

4.3.  The remaining mass terms representing the distributed mass of the tower may be 

approximated as zero without a meaningful loss in accuracy.  With the state-space model 

formed, the transfer functions relating measured outputs to the inputs may be estimated 

by Equation 4.5 and input estimates (one generated from each measured output) may be 

estimated using Equation 4.1.  Finally, the multiple input estimates are averaged to 

produce the system-wide estimate of the input spectra.  The complete algorithm is 

depicted in Figure 4.3.  A laboratory validation experiment is presented in the next 
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section to demonstrate the effectiveness the method on a turbine analog structure with 

known structural properties and measurable loading. 

 

4.4. Laboratory Validation of Load Estimation Method 

Validation of the load estimation method occurs in the laboratory using a test 

structure designed to be a turbine analog that has known parameters and can be excited 

using known loading.  The turbine analog structure is composed of a 3.1 m long, nominal 

 
Figure 4.3. Graphical depiction of load estimation algorithm. 
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2.5 inch (6.35 cm) schedule-40 steel pipe, to represent the turbine tower that is welded to 

a 1 inch (2.54 cm) thick base-plate and a 3/8 inch (0.952 cm) thick cap-plate.  The cap-

plate supports four normal-weight, two-core concrete masonry units (CMU) that 

represent the eccentric tip mass of the turbine nacelle and blades.  These CMUs are 

arranged in two layers and held in place vertically by a top plate with four through bolts, 

and are clamped around their perimeter to restrain lateral movement relative to the cap-

plate.  The base-plate is bolted to the strong-floor of the University of Michigan 

Structures Laboratory.  An MB Dynamics 110 modal shaker is suspended at the height of 

the cap-plate from a cantilever beam supported by the lab’s strong-wall and is connected 

to the cap-plate by a stinger.  The lab structure and modal shaker are depicted in Figure 

4.4.   

The laboratory structure tower is instrumented along its height with eight Crossbow 

CXL02LF1Z accelerometers oriented laterally in the direction of excitation and evenly 

 
 (a) (b) (c) 

Figure 4.4. Laboratory validation structure: (a) full structure view; (b) attachment and 
support of modal shaker; (c) instrumentation. 
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spaced (by 80 cm on center) between the base and the tip mass.  Another set of eight 

accelerometers is installed oriented in the orthogonal lateral direction to measure 

incidental out of plane vibrations.  Accelerometers are also mounted to the sides of the 

modal shaker, oriented laterally in the direction of excitation.  An Omega DLC101 

dynamic load transducer is mounted in series between the modal shaker stinger and the 

structure to provide a direct measure of input loading applied to the structure.   

The modal shaker is used to provide arbitrary loadings to the laboratory structure.  

Both white noise loadings as well as artificially colored-noise loadings are applied.  

White noise loading provides excellent excitation of structural modes and does not 

interject additional peaks into the frequency spectra (Figure 4.5).  This loading is used in 

preliminary studies to characterize the modal parameters of the structure.  Using the 

white-noise loading, modal frequencies are identified at 10.7 rad/s, 121 rad/s, and 269 

rad/s.  However, input spectra from wind loadings rarely approximate those of white-

noise inputs (Holmes 2007).  A more challenging colored noise loading with peaks 

representing the effects of the rotating blades, out-of-plane modes, and other sources of 

 
Figure 4.5 Measured acceleration output spectra from sensor level four mounted on 

the tower of the laboratory validation structure under white-noise loading. 
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harmonic noise contamination is then applied to the structure to be estimated.  The 

resulting output spectra measured at level 4 is shown in Figure 4.6 where modal 

frequencies are significantly less clear than in Figure 4.5.  Operational deflection shapes 

are also distorted by the application of colored noise (Figure 4.7). 

 
Figure 4.6. Measured acceleration output spectra from sensor level four mounted on 

the tower of the laboratory validation structure under colored-noise loading. 

 

 
 (a) (b) 

Figure 4.7. Discrepancies in operational deflection shapes generated from output 
signals resulting from both white noise and colored noise inputs: (a) white noise input; 

(b) colored noise input. 
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These challenges of output-only system identification of structures with non-white 

excitation necessitate identification by a model-based method such as that presented in 

the previous section.  Structural response data are collected at a sampling frequency of 

200 Hz using the Narada wireless sensing units.  Then, peakness and operational 

deflection shapes are computed for 2048 discrete frequency points between zero and the 

Nyquist frequency (100 Hz).  The simulated annealing algorithm is then used to update 

the assumed modes method model parameters, the results of which are presented in Table 

4.1.  The three identified mode shapes from the AMM that fall below the Nyquist 

frequency are presented in Figure 4.8 with the colored noise operational deflection 

shapes.  Identified modal frequencies (including the first mode assumed, a priori, to be 

Table 4.1. Estimated structural parameters of laboratory validation structure. 
Parameter E 

(GPa) 
ρ 

(kg/m3) 
dt 

(cm) 
db 

(cm) 
t 

(cm) 
L 

(m) 
e 

(cm) 
M 

(kg) 
J 

(kg m2) 
Value 200 7850 7.3 7.3 0.5 3.1 20 78 4.8 
Estimated 
Value 205 7901 8.0 8.0 0.5 3.4 25 85 5.2 

 
Figure 4.8. Identified mode shapes of the laboratory validation structure. 
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10.7 rad/s) are presented with the measured acceleration output spectra in Figure 4.9.  

Finally, a plot of the average estimated input spectra is presented in Figure 4.10 with the 

measured real input spectra.  Figure 4.9 shows excellent agreement between the measured 

and estimated input spectra demonstrating the effectiveness of the method in the 

laboratory setting.  Also investigated is the effect of error in the a priori estimate of the 

first modal frequency as modeling error and environmental effects will affect its 

 

Figure 4.9. Modal frequencies identified as part of the load estimation algorithm 
overlaid with the output spectra measured at sensor level 7. 

Figure 4.10. Estimated input spectra for the laboratory validation structure overlaid 
with the “real” measured input. 
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accuracy.  Since the objective function penalizes models that result in first modal 

frequencies that are different than the assumed frequency, incorrect assumptions do tend 

to cause errors in first frequency returned by the algorithm.  Errors of up to 5% are 

investigated and result in only minor localized errors in the final load estimation spectra.  

Over this range, the proper identification of higher order modes is not affected.  This 

result validates the theory behind the method, but a demonstration on a full-scale 

operational wind turbine is also necessary.  In the next section, the load estimation 

method is applied to an operational turbine as part of a field turbine wireless 

instrumentation study.  

 

4.5. Wind Turbine Instrumentation 

The subjects of this portion of the study are three wind turbines: two 78 m tall, 2 MW 

Vestas V-80 turbines, Figure 4.11(a and c), and one 40 m tall, 250 kW NEG-Micon 250 

turbine, Figure 4.11(b).  All three are circular steel towers bolted to concrete foundations 

with power generators and nacelles located at the top.   Internally, the towers are hollow 

with periodic steel platforms intended to prevent workers from accidentally falling the 

entire tower height.  The instrumentation of each tower included in this study is designed 

to fulfill specific objectives in order to demonstrate the effectiveness of wireless sensors 

in this environment.  The instrumentation and the objective of each campaign is detailed 

for each turbine in the following sub-sections, as well as in Table 4.2.   

In this study, two sensors are interfaced to the Narada wireless sensor: a MEMS 

accelerometer (Crossbow CXL01) and metal foil strain gauge (Texas Measurements 

YFLA-5-5L).  The accelerometer has a low sensitivity of 1.0 V/g which means its output 
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will be small during ambient excitation of the turbines.  Hence, a signal conditioning 

board custom designed for ambient vibration measurements (Figure 4.12(a)) is also 

employed (Wang 2007).  The signal conditioning circuit serves two functions; it serves as 

a band-pass (0.03 to 25 Hz) anti-aliasing filter and amplifies the sensor output voltage by 

a factor of twenty so as to better utilize the full input range of the ADC.  Amplification is 

especially important when recording the output of accelerometers deployed for ambient 

response measurements.  Unlike most sensors, strain gauges do not output a voltage 

 
 (a) (b) (c) 

Figure 4.11. Location of wireless sensors within the (a) Vestas #1 (located near 
Wilhelmshaven, Germany), (b) Vestas #2 (located near Jever, Germany), and (c) 

Micon (located nein Langeln, Germany) turbines. 

Table 4.2. Summary of turbine installation objectives. 
Turbine, 
Location 

Vestas V-80, 
Wilhelmshaven 

NEG-Micron 250, 
Langeln 

Vestas V-80, 
Jever 

Testing 
Objectives 

Basic Wireless 
Functionality 

Impulse Loading 
Wireless Range 

Testing/Reliability 
Side-by-Side 

Wired Comparison 
Modal Analysis Strain Sensing 

 Mode Shapes Load Estimation 
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signal directly.  Rather, a bridge circuit is necessary to convert changes in gauge 

resistance to a voltage signal.  A Wheatstone bridge circuit is designed (Figure 4.12(b)) to 

convert the strain gauge resistance changes to a voltage signal that can be digitized by the 

wireless sensor ADC. 

 

4.5.1. Vestas Turbine Installation 1 

The first turbine instrumentation presented in this study is one of the 2 MW Vestas V-

80 turbines.  This turbine is located in a rural area outside of Wilhelmshaven, Germany 

and is sited on the German Wind Energy Institute testing site.  The objectives of the first 

instrumentation are to: 1) demonstrate that wireless sensors will operate within the 

turbine tower, 2) collect and transmit acceleration data, and 3) demonstrate that the data 

collected compare favorably with similar data collected via a traditional tethered data 

acquisition (DAQ) system installed in parallel.  To accomplish these goals, four wireless 

 
 (a) (b) 

Figure 4.12. Signal conditioning circuitry, (a) Signal conditioning board for 
amplifying and band-pass filtering of low-amplitude acceleration signals; (b) 

Wheatstone bridge circuit for conversion of strain gauge resistance changes to voltage 
signals. 
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sensor nodes are located at different levels within the tower, one at each of the steel 

platforms; connected to each wireless sensor node are two accelerometers measuring 

lateral acceleration in orthogonal directions (denoted as X and Y in Figure 4.11(a)), for a 

total of eight accelerometers.  Amplification and filtering circuitry (previously detailed) is 

also provided for each transducer.  In the Vestas turbine, wireless sensors are placed at 

heights of 11.1 m (Level 1), 28.1 m (Level 2), 51.7 m (Level 3), and 76.1 m (Level 4) 

above the ground level.  The locations of the wireless sensors with respect to the height 

of the tower may be seen in Figure 4.11(a).  Data collected at a variety of sampling 

frequencies (50, 100, 500 Hz) are transmitted to a laptop PC located at the base of the 

tower.  To better facilitate transmission of data within the tower, hatches in the steel 

platforms are kept open during testing.  For comparison purposes, PCB 3701 

accelerometers are connected by coaxial wire to a commercial DAQ installed in parallel 

to the wireless sensors.  Data runs are coordinated between the two systems to facilitate 

direct comparison. 

 

4.5.2. Micon Turbine Installation 

The next part of the field validation study focuses on the Micon turbine; this turbine 

is located in Langeln, Germany.  In the Micon turbine, controls are available to the 

operator to engage a braking mechanism on the hub of the turbine.  Hard braking 

provides an “impulse-like” loading to the entire structure.  This ability is important for 

modal analysis of structures with unmeasurable inputs or structures that are excited by 

ambient excitation sources (e.g. wind) that do not generally manifest themselves as 

white-noise (Holmes 2007).  With the presence of the impulse-like load, proper excitation 
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of modal frequencies is assured thereby allowing the identification of true mode shapes 

whereas, in the previous two instrumentations, only identification of operational 

deflection shapes is possible.  Again, four wireless sensor nodes are located in the towers, 

each with two accelerometers measuring lateral acceleration in orthogonal X and Y 

directions.  In the Micon turbine, these sensors are located at heights of 8 m (Level 1), 17 

m (Level 2), 26.5 m (Level 3), and 33.2 m (Level 4) above the base (ground) level.  The 

locations of the wireless sensors with respect to the height of the Micon tower are 

presented in Figure 4.11(b).  Data are collected both wirelessly (sampled at 100 Hz) and 

with the parallel tethered DAQ system (sampled at 200 Hz) under both ambient and 

impulse-like loadings.   

To find the modal properties of the wind turbines, the DIAMOND software package 

(developed at Los Alamos National Laboratory for MATLAB) is adopted.  The 

DIAMOND package was developed to help simplify modal analysis for practitioners of 

experimental mechanics (Doebling, et al. 1997).  The program takes as its inputs, the 

time-history data, frequency response functions, the coherence function matrix, cross and 

auto-power spectra, and geometry data for the structure.  With user input, modal 

frequencies are selected by either peak-picking, the eigenfunction realization algorithm 

(ERA), complex exponential, or rational polynomial methods.  For this study, ERA is 

used to identify potential modal frequencies and mode shapes by identifying a state-space 

model of the structure from its Hankel matrices.  Once identified by ERA, the model 

frequencies are examined for closely spaced modes using the rational polynomial 

methods to reconstruct transfer functions for each output.  Finally, the modes are verified 
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using peak-picking.  With the modal frequencies identified, the imaginary parts of the 

frequency response functions at that frequency form the operational deflection shape. 

 

4.5.3. Vestas Turbine Installation 2 

The final turbine instrumentation presented in this study involves the second of the 2 

MW Vestas V-80 turbines; this turbine is located outside of Jever, Germany.  The 

objectives of this instrumentation are to: 1) quantify the performance of the wireless 

sensing system within the turbine tower, 2) to add strain sensors to the network in order 

to generate useful data regarding the performance of the structure at its base (where 

lateral acceleration signals would be minimal), and 3) to estimate loading from the 

measured response of the turbine.  Acceleration instrumentation in this part of the study 

is similar to the previous section except that this turbine has one fewer internal platform 

(Level 1 is not present); there are three sensor nodes located directly above the internal 

bulkheads measuring two accelerometers each in orthogonal X and Y directions, see 

Figure 4.11(c).  In this portion of the study, an additional wireless sensor is located at the 

bottom of the tower measuring two channels of flexural strain response.  Wheatstone 

bridge circuitry (previously introduced) is also provided to convert the change in 

resistance of the strain gauges into a measurable voltage signal before interfacing with 

the wireless sensor.  A typical sensing node installation is shown in Figure 4.13(a) with a 

detailed accelerometer installation view in Figure 4.13(b) and strain gauge installation 

detail in Figure 4.13(c).  A strain gauge connected to a traditional DAQ system is 

installed in parallel to the wirelessly enabled strain gauge as shown in Figure 4.13(c).   
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Data from these sensing nodes (again collected at 50, 100, and 500 Hz) are 

transmitted to a laptop located at the base of the structure.  A second laptop passively 

monitors and records network traffic.  During the wireless tests, data packets transmitted 

from a sensor to the server must be successfully acknowledged by the server.  The record 

of network traffic shows where multiple attempts are made to send individual data points.  

In the event that the network monitor misses a packet, one can still infer its presence 

based on the expected timing of the packets and their embedded (consecutive) sequence 

numbers.  After the data collection, an off-line analysis of this record is performed to 

 
 (a) (b) 

 
(c) 

Figure 4.13. Installation of the wireless sensing system in the Vestas #2 turbine: (a) one 
sensing node with two accelerometers, (b) accelerometer installation detail, and (c) 

strain gauge installation detail. 
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quantify the percentage of packets requiring additional transmissions before they 

successfully generate and receive an acknowledgement from the server.  This analysis 

will quantify the reliability of the wireless communication channel within the turbine 

tower.  The parallel tethered DAQ system is again installed for comparison. 

The load estimation algorithm is implemented using the data collected from the 

second Vestas turbine installation.  Here, operational deflection shapes are identified via 

FDD algorithm over the range of discrete frequencies from zero to the Nyquist frequency.  

These operational deflection shapes are compared to mode shapes obtained from the 

assumed modes method model for a given set of structural properties.  The model 

producing the best match between model-driven mode shapes and data-driven operational 

deflection shape (that also has modal frequencies corresponding to peaks in the output 

spectra) is identified via a parallel simulated annealing search.  Identified modal 

frequencies, mode shapes, and the mass estimate are used to build a state-space 

representation of the system from which transfer functions mapping the input to the 

measured outputs can be constructed.  These transfer functions are then used with the 

output spectra to estimate the loading spectra (one estimate from each sensor).  These 

estimates are averaged to form a final estimate of the loading. 

 

4.5.4. Wind Turbine Monitoring Results and Discussion 

Results from the first Vestas turbine installation demonstrate that wireless sensors can 

indeed function effectively in the wind turbine environment.  The wireless sensing 

system effectively measures effects of ambient (wind) excitation on the turbine during 

normal operation.  Additionally, wireless sensors are capable of communicating data 
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from all levels of the tower to a server located at the base of the structure.  For example, 

time history accelerations from all 8 channels are shown in Figure 4.14.  A comparison 

between the wirelessly collected data and that recorded by a traditional tethered system 

shows very good agreement between the two (see sample ambient data in Figure 4.15), 

thus validating the viability of the wireless sensing system in this application.  Some 

minor differences in noise levels are evident due to minor analog domain corruption of 

the wired system signals in imperfectly shielded cable runs down the height of the tower 

as well as differing low-pass anti-aliasing filter designs used in each system.  Finally, 

Figure 4.14. Sample acceleration data collected on the wireless sensor network in the 
Vestas #1 turbine. 
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natural frequencies are evident in the frequency domain realization of the wirelessly 

collected data (Figure 4.16). 

Example time history plots that include blade braking within the nacelle are presented 

for the Micon turbine in Figure 4.17.  During these runs, the brake is activated for a short 

pulse which instantaneously stops the blades from turning, resulting in an impulse-like 

loading upon the tower.  Figure 4.18 presents the fast-Fourier transform (FFT) and the 

covariance estimate of the discrete-time power spectral density (PSD) calculated for data 

measured at Level 4 of the Micon turbine.  These processed signals are used in 

DIAMOND for the modal analysis portion of the study.  Modal shape results for the 

Micon turbine are presented in Figure 4.19.  Modal frequencies identified (0.89 and 4.24 

 
Figure 4.15. Comparison of wired and wirelessly obtained data from the Vestas #1 

turbine.  Acceleration data shown is for Level 4. 
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Figure 4.16. FFT results from the Vestas #1 turbine, Level 4 accelerations. 

 

Figure 4.17. Time history response of Micon tower under “impulse” loading. 
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Hz) in this study for the Micon turbines compare well with those found for the same 

structure using finite element updating methods, as reported in Rolfes, et al. (2007).   

 
Figure 4.18. FFT and PSD results from the Micon turbine. 

 

 
Figure 4.19. First two (3-dimensional) modes of the Micon turbine. 
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Finally, the goals of the second Vestas installation are to quantify wireless network 

performance as well as to generate an estimate of the loading spectra using the method 

validated in the lab.  With regard to wireless reliability, interference in the digital wireless 

channel will manifest itself as dropped packets (that must be retransmitted) rather than as 

corrupted data.  A second laptop computer, acting as a network monitor, observed two 

levels of performance: one level for the sensors located at the base, and another for those 

located further up the tower.  At the base, 3-4% of the packets require multiple attempts 

to send before an acknowledgement packet is received.  Because of the relatively short 

distance between antennas (less than 2 m), losses here are primarily due to interference 

from the electrical equipment located at the base of the tower as well as adverse 

multipath effects.  Sensors located at higher levels record a slight drop in reliability, with 

5-6% of packets requiring multiple transmission attempts.  Internal bulkheads do not 

appear to degrade the wireless transmissions; for instance, Level 4 performance is not 

significantly different than Level 2 performance due to numerous openings in the 

bulkheads and an air gap between the bulkhead and the tower shell.    Because in the 

wireless system the sensor signal is digitized directly at its source, there is less 

opportunity for analog domain corruption of the signal than in a traditional tethered 

system.  Another objective of testing in the second Vestas turbine was the ability to 

collect strain data using wireless sensors.  Strain gauge data collected from the base of the  

second Vestas turbine is also presented (Figure 4.20) to demonstrate successful collection 

of vibrational strain data from the base of the structure. 
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4.5.5. Load Estimation of Vestas 2 Wind Turbine 

The second Vestas turbine is also used to test the load estimation method.  The output 

spectra computed from the acceleration data in the x-direction (Figure 4.11(c)) are 

colored by the loading, the response of the tower to the loading, as well as the effects of 

the rotating blades.  The modal frequencies identified as part of the load estimation 

method are overlaid with the output spectra measured at three locations along the tower 

height in Figure 4.21, including the first mode that is estimated a priori at 2.6 rad/s.   The 

corresponding model mode shapes are presented in Figure 4.22 and are plotted against 

the operational deflection shapes computed from the output-only FDD method at 

frequencies corresponding to the modal frequencies identified during the execution of the 

simulated annealing algorithm.  The structural properties identified using the simulated 

 
Figure 4.20. Wireless strain comparison between the wired and wireless systems in 

the Vestas 2 turbine. 
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annealing algorithm that form the basis of the modal model are presented in Table 4.3 

and appear to be quite reasonable.  Also presented are estimated structural values 

obtained from the turbine blueprints.  Those mode shapes and frequencies (as well as the 

Figure 4.21. Identified modal frequencies superimposed on the measured output 
spectra from three levels in the Vestas #2 turbine. 

 
Figure 4.22. Mode shapes and operational deflection shapes for the Vestas #2 turbine 

as identified by the load estimation algorithm. 
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top mass estimate) are then used to generate state-space and transfer function matrix 

models of the turbine tower.  Input loadings estimated using each accelerometer’s output 

are presented in Figure 4.23 and show very good consistency between the individual 

estimates conducted at each node.  These estimated loading spectra are averaged into a 

final loading spectra estimate as seen in Figure 4.24.  The plot in Figure 4.24 represents 

the best guess as to what the true loading of the turbine is during the instrumentation 

campaign.  In the estimated input spectra, peaks corresponding to the peaks in the transfer 

function at resonant frequencies have been canceled out, but loading peaks remain.  In 

Figure 4.24, loading peaks are evident at multiples of 1.63 rad/s (0.26 Hz).  These peaks 

correspond to the observed rotational frequency of the turbine blades.  Effects of coupling 

Table 4.3. Estimated structural parameters of Vestas #2 turbine. 

Parameter E 
(GPa) 

ρ 
(kg/m3) 

dt 
(m) 

db 
(m) 

t 
(cm) 

L 
(m) 

e 
(m) 

M 
(kg) 

J 
(kg m2) 

Value 200 7850 2.3 4.4 5.0 78.2 2.0 -- -- 
Estimated 
Value 197 7804 2.4 4.4 5.2 77.7 2.4 125 

x103 
7.81 
x106 

 

 
Figure 4.23. Estimated input spectra as estimated from sensor outputs at three levels 

of the Vestas #2 turbine. 
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between the x-direction and y-direction modes are also evident in the estimated input as 

the estimate method is only applied for modes in the x-direction. 

 

4.6. Wind Turbine Load Estimation and Monitoring Conclusions 

Characterization of dynamic loads and their interaction with wind turbine towers are 

vital for the future development of this promising energy technology.  This chapter 

presents a frequency-domain model-aided method for wind load estimation with 

application to wind turbine towers.  As opposed to prior methods, this method explicitly 

takes into account uncertainties in the available model to avoid bias.  It updates an 

assumed physical model using wirelessly collected data before finding the load estimate.  

The method does require an a priori estimate of the first modal frequency in order to 

reliably converge on the correct model of the system.  However, it has been found that 

the method is resilient in the face of error in that first modal frequency estimate but, if 

possible, that error should be small (within 5%).  It is also important to bound the model 

 
Figure 4.24. Average estimated input spectra from all three sensor outputs measuring 

acceleration in the x-axis of the Vestas #2 turbine. 
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update parameter search range to values that are realistic (i.e., values over 50% in error 

from the estimated true value should be omitted) to aid in convergence.   

Wireless sensor networks provide a low-cost and easy to install platform from which 

to collect the data required to build these necessary models.  In addition, wireless sensors, 

with their inherent on-board data processing abilities, can be used to automate 

monitoring, load estimation, and damage detection in large-scale wind turbines in an 

economical manner.  By demonstrating the effectiveness of wireless sensors in the wind 

turbine environment for data collection, building dynamical models of the structures, and 

load estimation, this study represents the first phase of their implementation for 

improving the design and economic viability of wind power technology.   

Future work should focus in three new directions.  First, long-term monitoring using 

permanent monitoring systems is an important step in the study of loads and structural 

responses of turbines over a large range of conditions and turbines, especially off-shore 

turbines that require additional study of both their dynamic behavior and the loadings to 

which they are subjected.  In particular, the combination of wind and wave loads on the 

turbine structure remains a challenging environment for the economical design of off-

shore turbines.  For such turbines, dense sensor instrumentation will be necessary to 

measure the dynamic response of the system to wind and wave loads and build a 

statistical database of estimated loading conditions experienced by the structure over an 

extended period of time.   

Second, a two dimensional version of the load estimation method would be 

advantageous to separate from sensor outputs the effects of the structural response both 

parallel and perpendicular to the wind loading direction.  Wind turbines are designed to 
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turn into the wind through rotation of the nacelle atop the tower.  Sensors installed within 

the tower are fixed in a set orientation that may not reflect the orientation of the blades.  

Because the orientation of the nacelle has a strong effect on the orientation of the mode 

shapes, the measured operational deflection shapes will change as the nacelle rotates.  

Decoupling the modes that are parallel to the wind direction and those perpendicular to 

the wind direction is difficult and affects the quality of the load estimation.  A load 

estimation method that employs a three dimensional model would help to address this 

problem. 

Finally, damage detection algorithms must be included in the computing cores of the 

wireless sensors to provide automated monitoring of the condition of turbine towers, 

nacelles, and blades and report failures, both after the fact and, if possible, incipient.  

With this information, the cost and risk inherent in building these structures may be 

reduced, increasing their attractiveness to the energy industry and to the public as a 

whole.  A damage detection algorithm suitable for parallelization in a wireless sensor 

network is presented in the next chapter of this thesis. 
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CHAPTER 5 

 

WIRELESS STRUCTURAL HEALTH MONITORING USING MIGRATION OF 

SYSTEM POLE LOCATIONS 

 

In this chapter, a novel wireless approach to the characterization of structural damage 

in civil structures is presented.  The proposed method is scalable, automated, and well 

suited for implementation within a low-power, low-cost wireless sensor network.  

Structural damage often results in subtle changes to structural stiffness and damping 

properties that are manifested by changes in the location of transfer function 

characteristic equation roots (poles) upon the complex plane.  Using structural response 

time-history data collected from instrumented structures, transfer function poles can be 

estimated using traditional system identification methods with minimal communication 

between sensing nodes.  Comparing the location of poles corresponding to the structure 

in an unknown structural state to those of the undamaged structure, damage can be 

accurately identified and its severity estimated.  Pattern classification methods that have 

been increasingly popular in recent years for damage detection are leveraged to quantify 

damage existence, location, and severity.  A novel method for evaluation and integration 
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of damage detection results realized by individual sensor nodes is also presented.  Both 

input/output and output-only versions of this method are presented. 

 

5.1. Motivation and Background 

Autonomous monitoring of civil infrastructure systems can produce vital information 

regarding the condition of these complex engineered systems in real-time.  The process of 

collecting and interrogating data to infer the damage state of a structure is referred to as 

structural health monitoring (SHM).  Due to the potential of SHM to provide continuous 

and autonomous assessments of the damage state of structures, SHM is an extremely 

active research field with many applications to civil, mechanical, military, and aerospace 

structures.  Methods for SHM vary widely and are categorized by the type of structure to 

which they are applied, the type of damage expected in the monitored structure, the 

physical parameter measured from the structure, the type of damage sensitive feature 

extracted from collected data, the assumptions made regarding the availability of high-

fidelity structural models (e.g., finite-element models), the type of underlying model 

assumed for the structure (high-fidelity or reduced-order as well as explicit or implicit), 

the availability of data collected from the structure in its healthy (or baseline) state, and 

the scale (i.e., local versus global detection abilities).  Extensive summary reviews of 

SHM methods are available in the literature including reviews of vibration based methods 

(Doebling, et al. 1998; Carden and Fanning 2004), a general review of SHM literature 

(Sohn, et al. 2003), a review of impedance based methods (Park, et al. 2003), a review of 

methods utilizing wireless sensors (Lynch and Loh 2006), reviews of SHM applications 
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for civil structures (Chang, et al. 2003; Brownjohn 2007), and a review of methods based 

on guided waves (Raghavan and Cesnik 2007).  The reader is encouraged to refer to these 

references for a comprehensive review of the current state of the art.   

This chapter attempts to address two major challenges within the broader SHM 

framework and that is economical collection of the data required for SHM analysis, as 

well as automation of the processing of this data to avoid the accumulation of 

unprocessed data that, if unexamined, is ultimately wasted.  The large number of sensors 

necessary to collect sufficient and localized response data in order to build a complete 

picture of the system behavior (Farrar, et al. 2003) can be prohibitively expensive to 

install.  Because the cost of cable installation can be in the range of thousands of dollars 

per channel (Celebi 2002), wireless sensor networks equipped with low-cost MEMS 

accelerometers (Lynch, et al. 2003) are gaining popularity as a means of controlling 

installation costs as monitoring systems grow in size (i.e., total number of sensor 

channels employed).  A unique aspect of wireless sensing is that each sensor has a small 

amount of collocated memory and processing power, meaning that a wireless sensor 

network has decentralized memory and computing resources (Straser and Kiremidjian 

1998; Nagayama and Spencer 2007).  Furthermore, collected data is also distributed 

throughout the network.  Consolidation of this data in a centralized server will incur a 

communication overhead in terms of energy expended and bandwidth utilized, effectively 

placing limits on battery life and scalability of the network.  Embedded processing of 

data limits the communications load, preserving both energy and network scalability.  For 

many applications, wireless sensors must be able to operate for an extended period of 

time on battery power necessitating low-power design.  Tradeoffs made in this design 
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will necessitate some reduction in functionality (particularly in terms of processing 

speed) versus a computing platform designed to run using power supplied by the 

electrical grid.  These tradeoffs result in the need to identify reduced order models of 

monitored structures versus more processor intensive models such as those based on the 

finite element method that would require unacceptable long computational periods for 

fast response applications after a major disaster.  Additionally, within a single wireless 

sensor, memory limitations restrict the model size and number of data points that can be 

used in many batch-type system identification methods, including batch least-square, 

subspace identification, and the eigenvalue identification algorithm (ERA), necessitating 

care when selecting an identification algorithm to be embedded. 

With these challenges in mind, this chapter presents a health monitoring method 

tailored for wireless sensing applications in civil infrastructure systems based on time-

series models.  Unlike methods based on mode shapes (or their derivatives) centralization 

of data collected from spatially distributed transducers is not a requirement.  Nor is it 

assumed that a high-fidelity model of the structure is available (Fassois and Sakellariou 

2007).  Instead, time-series methods leverage the embedded processing power of the 

wireless sensors and employs, primarily, sensor-level computing, (i.e., processing within 

a sensor on locally collected data).  The use of autoregressive time-series models for 

SHM is first proposed by Brinker, et al. (1995a; 1995b) that extracted  modal frequencies 

from acceleration data as damage sensitive features.  A later study by Sohn and Farrar 

(2001) identifies time-series coefficients from structural response data and uses them to 

construct a predictor model.  The error between a recorded time-series data set and the 

estimate generated by the model is presented as the damage-sensitive feature.  Here, 
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explicit use of structural properties (e.g., modal frequencies) is avoided due to their 

dependence on environmental conditions, but the predictor model used to generate the 

damage feature is dependent on the structural properties (modal frequency and damping) 

as demonstrated by Brinker, et al. (1995a), though the dependence on damping is not 

exploited until a method proposed by Lynch (2004; 2005) demonstrates that migration of 

systems poles in the complex plane (that inherently indicates changes in both modal 

stiffness and modal damping) can be indicative of damage.  Other follow-up studies have 

applied variants of autoregressive time-series modeling in different contexts (Montalvao, 

et al. 2006; Fassois and Sakellariou 2007) including Wei, et al. (2005) who present a 

nonlinear autoregressive model, Lu and Gao (2005) who use response measurements as 

artificial inputs to their model, and Lynch, et al. (2006) who present a wireless validation 

study for time-series based SHM using the autoregressive coefficients themselves as 

damage features.  Because the approach by Lynch, et al. (2006) uses the autoregressive 

coefficients as damage features, it has the advantage of providing additional damage 

features per data set than predictor error based methods.  However, it is demonstrated that 

only some of these features are sensitive to the forms of damage applied in their study.  

Without a physical interpretation, it is difficult to provide a rationale for why some 

coefficients exhibit sensitivity nor establish an a priori means to predict which 

coefficients will be the most useful. 

In this study, data collected by a wireless network is used to fit a time-series model by 

a recursive least-squares algorithm, converting the time-series coefficients into equivalent 

parametric damage features by transformation into the discrete-time Z-domain where 

they can be converted into equivalent system poles (see Lynch (2004; 2005)).  Pole 
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locations within the complex-plane contain information about the modal frequencies and 

damping ratios of the system; changes in their location over time reflect changes in these 

modal properties.  Once a sensor within the network has computed a set of system poles, 

it compares them to a saved baseline set and quantifies the degree of their migration in 

the form of a damage index.  The relationship between the damage sensitive features 

(equivalent system poles) and structural modes will be exploited in the integration step to 

identify the relative quality of damage indices produced by different sensors from their 

local identified pole locations.   Damage indices resulting from individual sensors are 

then integrated through use of a weighted average based on the modal form of the 

observability grammian.  This average is calculated by the network and produces a 

network-level estimate of the degree of damage with a minimum of raw data 

transmission. 

The structure of the chapter is as follows.  First, the theory behind input/output and 

output-only time-series modeling and their relationship to system poles and structural 

vibrational behavior are presented.  Next, three damage indices for the identified system 

poles are introduced that measure the movement of poles on the complex plane over time.  

This discussion is followed by the presentation of a system for integrating damage 

assessment results from multiple damage indices computed from poles corresponding to 

multiple vibrational modes as well as integration of damage indices computed by 

multiple sensing nodes.  The method is then illustrated on two test structures: a three-

span, prestressed concrete box-girder bridge and a six-story, lumped-mass, steel structure.  

The box-girder bridge utilized in this study is the Z24 bridge located between Utzenstorf 

and Koppigen in Switzerland.  In 1998 researchers had unprecedented access to the 
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bridge prior to its scheduled demolition; they were able to instrument and monitor the 

bridge as it was progressively damaged.  By doing so, they produced a set of vibrational 

data representative of a real structure subject to multiple, realistic damage modes.  While 

the data set acquired from the Z24 bridge has the advantage of having a high degree of 

realism, the demolition of the bridge makes it impossible to go back and instrument the 

bridge with Narada wireless sensors.  To test the method embedded inthe wireless 

sensors, a six-story laboratory steel structure is used for experimental validation.  

Applications of the method to the Z24 data set as well as the six-story structure are 

presented including modeling concerns, pole identification, and classification results.  

The chapter ends with concluding remarks and a discussion of the effectiveness of the 

proposed wireless structural health monitoring strategy.   

 

5.2. Theory for Pole Identification 

5.2.1. Time-Series Models 

Model selection for resource-constrained computing environments native to wireless 

sensor networks requires special care due to power and memory limitations coupled with 

the fact that data collected within the network is decentralized.  The linear difference 

equation model is well suited for application in wireless sensing networks as it is 

relatively simple to calculate and is easy to decompose by each system degree-of-

freedom.  Considering a single-input, single-output (SISO) system at time k, a discrete-

time linear difference equation consisting of m and n observations of past outputs, y[k-i], 

and past inputs, u[k-i], (respectively) would be written as: 
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ሾ݇ሿݕ  ܽଵݕሾ݇ െ 1ሿ  ڮ  ܽݕሾ݇ െ ݉ሿ

ൌ ܾݑሾ݇ሿ  ܾଵݑሾ݇ െ 1ሿ  ڮ  ܾݑሾ݇ െ ݊ሿ  ݁ሾ݇ሿ 
(5.1)

 

where ai and bi are weighting terms applied to the ith past output and input observations, 

and e[k] is the error that arises from measurement noise as well as physical effects not 

captured within the image of the model (high order terms and non-linearities).  The 

model can be rearranged to serve as an optimal linear predictor of the kth output: 

 

ොሾ݇ሿݕ ൌ െܽଵݕሾ݇ െ 1ሿ െ ڮ െ ܽݕሾ݇ െ ݉ሿ  ܾݑሾ݇ሿ  ܾଵݑሾ݇ െ 1ሿ  ڮ  ܾݑሾ݇ െ ݊ሿ (5.2)

 

which is in the form of an autoregressive with exogenous input (ARX) time-series model 

that may be transformed into a linear difference equation using the discrete time 

equivalent of the Laplace transform, the Z-transform (Proakis and Manolakis 1996).  

After application of the Z-transform, the more familiar form of the discrete-time linear 

difference equation emerges: 

 

ሻݖሺܪ ൌ
ܻሺݖሻ
ܷሺݖሻ

ൌ
ܾݖ  ܾଵିݖଵ  ڮ  ܾିݖ

1  ܽଵିݖଵ  ڮ  ܽିݖ  (5.3)

 

The polynomial in the denominator of Equation (5.3) is the characteristic equation of the 

model, the roots of which are the identified system poles that encapsulate information 

regarding global modal frequencies and damping of the system.  The roots of the 

numerator are referred to as zeros of the system and are specific to the input and output 

used. 
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Because it is often difficult, or costly, to command synthetic dynamic inputs in civil 

structural applications, system identification is often performed under ambient excitation 

conditions.  In such a case, modeling excitations as discrete inputs may not be 

appropriate.  In these applications, it often becomes necessary to assume ambient 

excitations are approximately stationary, white noise processes.  Provided that the input is 

relatively broad-banded, a reasonable model can still be fit to the data using an 

autoregressive, moving average (ARMA) model.  The most popular implementation of 

the ARMA fit is a two-step process detailed by Ljung (1999) and depicted in Figure 5.1.  

In the first step, a high-order (p > m), output-only autoregressive (AR) model is fit to the 

data:  

 

ොሾ݇ሿݕ ൌ െܽଵݕሾ݇ െ 1ሿ െ ڮ െ ܽݕሾ݇ െ ݉ሿ (5.4)

 

followed by the second step in which the resulting AR error signal, e, is treated as in 

input to a second, lower-order (m) ARX model (Ljung 1999).  The linear difference 

equation is drawn from the lower-order ARX model.  The use of AR and ARX steps in 

the identification process leads some to refer to this as an AR-ARX model (Sohn and 

Farrar 2001).   

 
 

Figure 5.1. Practical implementation of an ARMA least-squares fit. 
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5.2.2. Fast Transversal Filter 

To determine the weighting coefficients (a and b in input/output models or തܾ in 

output-only models), typically least-squares methods are used.  For example, if large 

amounts of memory and computational throughput are available, a batch least-squares 

solution will be adequate.  However, if one desires to implement the batch least-squares 

methods in resource-constrained computing environments (e.g. wireless sensors) real-

time or near real-time execution would likely not be possible.  An alternative approach to 

AR and ARX model determination would be through the use of recursive methods such 

as the fast transversal filter (FTF) (Haykin 1996).   

In this study, the FTF is employed for embedment in wireless sensors because it 

represents a significant reduction in computational overhead compared to many of the 

other recursive least-squares algorithms available.  In the FTF, the number of 

computations needed and the required memory increase linearly with the model order, 

O(p), unlike classical recursive least-squares, which increase by the square of the model 

order, O(p2) (Juang 1994).  In low-power wireless sensor applications, these 

computational savings are necessary to compute the transfer function with reasonable 

speed.  The FTF takes advantage of the shifting property, including a forward-time and 

backward-time output estimator (Cioffi and Kailath 1984).  The coefficients of the 

forward-time estimator are the model coefficients that define the transfer function to be 

identified.  The FTF employs the a priori and a posteriori errors in the backward and 

forward time estimators to update the estimators and the estimator update gains.  A 

complete derivation of the FTF may be found in Cioffi and Kailath (1984) or Haykin 
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(1991).   

A description of the FTF derived for a single-input single-output (SISO) system with 

a direct transmission term is given by Juang (1994) and presented in Table 5.1.  A single 

time step in the FTF algorithm begins when a new data point becomes available.  The 

data history vector, ࢜, is updated (Equation 5.5) using existing data, and the new data 

vector, ࢛࢟ሬሬԦ, can be formed (Equation 5.6).  These updated vectors may then be used to 

update the forward-time a priori error, ࢋሬԦ
ି, using the matrix of forward-time observation 

weights, ࢅሬሬԦ, derived from the previous step (Equation 5.7).  A conversion factor, ߛ, in 

Equation 5.8 relates the a priori error to the forward-time a posteriori error, ࢋሬԦ
ା (i.e., an 

estimation error derived from the observation weights after they are updated).  This 

conversion factor is derived in the backward-time estimation step.  The cumulative 

forward time error is then updated in the forward-time error squares term, ࢿሬԦ (Equation 

5.9).  The a priori error vector and the gain matrix, ࡳ, are used to update the matrix of 

coefficient weights (Equation 5.10).  An augmented gain matrix, ܩାଵ (Equation 5.11), 

and augmented conversion factor, ߛାଵ (Equation 5.12), are formed that are shared by 

both the forward and backward time estimation steps and are used to update the gain 

matrix, ࡳ, and conversion factor, ߛ, respectively using parameters found in the 

backward-time estimation step (Juang 1994).  These steps are depicted in Equations 5.14 

through 5.19.   
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Similar to the forward-time step, the backward time data history vector, vp (Equation 

5.14), and data vector, ࢛࢟ (Equation 5.15), are updated using the newly available data 

point and a backward-time a priori error, ࢋശሬ
ିሾ݇ሿ, can be determined (Equation 5.16).  A 

decomposed version of the augmented gain matrix (Equation 5.13) is then used to update 

the gain matrix, ࡳ, in Equation 5.16 also using the backward-time observation weights, 

Table 5.1.  Summary of FTF Algorithm. 
Forward-time Estimation 

data history vector, vp[k‐1]  ሾ݇࢜ െ 1ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ሾ݇ሿݑ
ሾ݇ݕ െ 1ሿ
ሾ݇ݑ െ 1ሿ

ڭ
ሾ݇ݕ െ ሿ
ሾ݇ݑ െ ےሿ

ۑ
ۑ
ۑ
ۑ
ې

  (5.5) 

new data vector, ࢛࢟ሬሬԦሾ݇ሿ  ሬሬԦሾ݇ሿ࢛࢟ ൌ ݑሾ݇  1ሿ
ሾ݇ሿݕ ൨  (5.6) 

a priori error, ࢋሬԦ
ିሾ݇ሿ  ሬԦࢋ

ିሾ݇ሿ ൌ ሬሬԦሾ݇ሿ࢛࢟ െ ሾ݇ሬሬԦࢅ െ 1ሿ࢜ሾ݇ െ 1ሿ  (5.7) 
a posteriori error, ࢋሬԦ

ାሾ݇ሿ  ሬԦࢋ
ାሾ݇ሿ ൌ ሾ݇ߛ െ 1ሿ ሬԦࢋ

ିሾሿ  (5.8) 
error squares, ࢿሬԦሾ݇ሿ  ሾ݇ሿሬԦࢿ ൌ ሾ݇ሬԦࢿ െ 1ሿ  ሬԦࢋ

ାሾࢋሬԦ
ିሿT  (5.9) 

observation weights, ࢅሬሬԦሾ݇ሿ  ሾ݇ሿሬሬԦࢅ ൌ ሾ݇ሬሬԦࢅ െ 1ሿ  ሬԦࢋ
ିሾ݇ሿࡳሾ݇ െ 1ሿ  (5.10)

augmented gain, ܩାଵሾ݇ሿ  ାଵሾ݇ሿܩ ൌ ൣࢋሬԦ
ାሾ݇ሿ൧TࢿሬԦ

‐1ሾ݇ሿ ሾ݇ࡳ െ 1ሿ െ ሾࢋሬԦ
ାሾ݇ሿሿTࢿሬԦ

‐1ሾ݇ሿࢅሬሬԦሾ݇ሿ൨  (5.11)
augmented conversion factor, 
 ାଵሾ݇ሿߛ ାଵሾ݇ሿߛ ൌ ሾ݇ߛ െ 1ሿ െ ሾࢋሬԦ

ାሾ݇ሿሿTࢿሬԦ
‐1ሾ݇ሿࢋሬԦ

ାሾ݇ሿ  (5.12)

decompose augmented gain ࡳାሾ݇ሿ ൌ ቂࡳା
ሺ࢘ሻ ሾ݇ሿ ାࡳ

ሺࢇሻ ሾ݇ሿቃ  (5.13)
Backward-time Estimation 

data history vector, vp[k]  ሾ݇ሿ࢜ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ሾ݇ݑ  1ሿ
ሾ݇ሿݕ
ሾ݇ሿݑ

ڭ
ሾ݇ݕ െ   1ሿ
ሾ݇ݑ െ   1ሿے

ۑ
ۑ
ۑ
ۑ
ې

  (5.14)

data vector, ࢛࢟ሾ݇ െ  ሿ ሾ࢛݇࢟ െ ሿ ൌ ݕሾ݇  ሿ
ሾ݇ݑ െ  ሿ൨ (5.15)

a priori error, ࢋശሬ
ିሾ݇ሿ  ശሬࢋ

ିሾ݇ሿ ൌ ሾ࢛݇࢟ െ ሿ െ ശሬሬሾ݇ࢅ െ 1ሿ࢜ሾ݇ሿ  (5.16)

gain, ࡳሾ݇ሿ  ሾ݇ሿࡳ ൌ
ାࡳ

ሺ࢘ሻ ሾ݇ሿ  ାࡳ
ሺࢇሻ ሾ݇ሿࢅശሬሬሾ݇ െ 1ሿ

1 െ ାࡳ
ሺࢇሻ ሾ݇ሿࢋശሬ

ିሾ݇ሿ
  (5.17)

observation weights, ࢅശሬሬሾ݇ሿ  ശሬሬሾ݇ሿࢅ ൌ ശሬሬሾ݇ࢅ െ 1ሿ  ശሬࢋ
ିሾ݇ሿࡳሾ݇ሿ  (5.18)

conversion factor, ߛሾ݇ሿ  ሾ݇ሿߛ ൌ
ାଵሾ݇ሿߛ

1 െ ାࡳ
ሺࢇሻ ሾ݇ሿࢋശሬ

ିሾ݇ሿ
  (5.19)

a posteriori error, ࢋശሬ
ାሾ݇ሿ  ശሬࢋ

ାሾ݇ሿ ൌ ശሬࢋሾ݇ሿߛ
ିሾ݇ሿ  (5.20)

error squares, ࢿശሬሾ݇ሿ  ሾ݇ሿശሬࢿ ൌ ሾ݇ሿശሬࢿ  ശሬࢋ
ାሾ݇ሿሾࢋശሬ

ିሾ݇ሿሿT  (5.21)
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 ,ߛ ,ശሬሬሾ݇ሿ which are then updated in Equation 5.17.  Also, the updated conversion factorࢅ

may be found (Equation 5.19) from the augmented conversion factor and augmented gain 

decomposition from the forward-time estimation step.  Equations 5.20 and 5.21 include 

some bookkeeping for the backward-time estimation step including update of the 

backward-time a posteriori error, ࢋശሬ
ାሾ݇ሿ, and error squares matrix, ࢿശሬሾ݇ሿ, but are not 

strictly necessary in this implementation where the desired end result is the updated 

matrix of forward-time observation weights of the AR or ARX model. 

The FTF may be initialized from theoretical values, assuming zero initial conditions 

(Haykin 1991), or based on an offline batch least-squares solution using pre-recorded 

data (Juang 1994).  In this study, the latter approach is utilized, employing a forgetting 

factor, λ, multiplying the old error squares terms in Equation 5.8 and Equation 5.20 to de-

emphasize older observations so that new trends will become apparent. 

While the FTF can be executed faster than the standard recursive least-squares 

algorithm, it does suffer from instabilities when implemented on a finite precision 

computer.  Unstable modes exist within the filter that are not excited by infinite precision 

arithmetic.  In real systems with finite precision, the stability of the filter is dependent 

upon both the degree of precision of the processor as well as the characteristics of the 

excitation signals (Slock and Kailath 1991; Haykin 1996).  This effect is exacerbated if a 

forgetting factor is used (Binde 1995).  Slock and Kailath (1991) present a stabilization 

solution for the FTF taking advantage of quantities in the FTF algorithm that are 

computed using both the forward-time and backward-time estimator.  In infinite precision 

systems these quantities will be calculated to be the same for both estimators.  As 

precision errors are introduced, there exists an error between the forward-time and 
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backward-time calculations.  Slock and Kailath essentially use these errors as feedback 

signals to stabilize the FTF filter.  A less computationally intensive method presented by 

Binde (1995) is used in this study.  In this method, “leakage correction factors” that are 

less than, but nearly equal to, 1 are introduced into the filter Equations 5.9 and 5.17 to 

control the propagation of errors.  Soh and Douglas (1997) confirm the effectiveness of 

the leakage correction method for real-world signals and forgetting factors (λ) that are 

also nearly 1. 

 

5.2.3. Pole Extraction 

Extraction of system poles from the identified characteristic equation requires 

identification of the complex roots of the characteristic polynomial.  Solving for the roots 

of higher order polynomials in an automated fashion can present some numerical 

difficulties.  In this study, the roots are found from the companion matrix of the 

characteristic polynomial, ࣝሺॣሻ: 

ࣝሺ1  ܽଵିݖଵ  ڮ  ܽିݖሻ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 0 … 0 െܽ
1 0
0 1

… 0
… 0

ڭ ڭ
0 0

ڰ ڭ
… 1

െܽିଵ
െܽିଶ

ڭ
െܽଵ ے

ۑ
ۑ
ۑ
ې
 (5.22)

 

A companion matrix has for its eigenvalues, the roots of the associated polynomial 

(Edelman and Murakami 1995).  The companion matrix is easily formed and its 

eigenvalues may be determined by use of LQ-decomposition, so long as there are no 

repeated roots (Press, et al. 1992).   
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In this study, system poles are extracted from the recursively identified time-series 

models (e.g., input/output ARX and output-only ARMA) described above.  Changes in 

the location of these poles in the complex plane are then experimentally correlated to 

damage.  Model order is based on the accuracy of the estimator (as determined using 

separate fit and validation data sets) as well as the match between the identified poles and 

pole locations determined from a modal identification study (see sections 5.3.2 and 

5.4.2).  Multiple sets of poles identified using multiple data runs are identified.  These 

poles form natural clusters of increasing frequency based on the modal properties of the 

structure.  The clustering effect is due to variability in the identified pole location due to 

environmental effects, sensor noise, nonlinear effects, and also damage.  Because the 

autoregressive models used in this chapter (i.e, ARX and ARMA) are not constrained to 

adhere to the specific underlying model degrees of freedom (DOFs) on which the modal 

identification study is based, the fit algorithm will include some additional poles that 

arise from local modes, out of plane and non-linear effects, or other unwanted effects.  

An automated algorithm is thus necessary to sort the poles generated by the 

autoregressive models that minimizes the distance between a set of candidate poles and 

the pole locations determined from the modal analysis study.   

Using multiple data sets to populate pole clusters for both the baseline and test 

conditions of the structure will help to minimize the effect of environmental variability, 

noise, and sorting error.  The algorithm tracks changes in pole locations, as identified by 

individual sensors, and classifies their severity based on their statistics.  Significant 

migration of pole cluster locations is identified as an indication of damage.  That damage 

estimate is normalized by the variance in identified pole location giving the algorithm a 
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statistical basis.  Results realized from multiple sensors are combined in a weighted 

average based on an estimate of sensor-to-noise ratio corresponding to individual modes 

of the structure.  This weighted average yields a network-level measure of damage.  The 

division of sensor-level and network-level computing tasks is detailed in the next section 

(section 5.2.4). 

 

5.2.4. Sensor-Level and Network-Level Data Processing 

For potential damage cases, structural response data (e.g., acceleration) is collected 

by wireless sensors located throughout the structure.  For input/output cases, input data 

(e.g., base acceleration) is transmitted to the entire network while output data is held 

locally.  The sensors then execute the recursive least-squares algorithms previously 

described to determine the time-series weighting coefficients (i.e., coefficients of the 

ARX model for input/output and coefficients of the ARMA model for output-only) based 

on local output observations, and fit using 4096 data points.  With those coefficients 

determined, Z-domain locations of the identified system poles are determined at the 

sensor level, as described in the previous section (section 5.2.3).  These values are stored 

and the process is repeated 10 to 25 times over a short period of time during which, it is 

assumed that the damage level remains constant.  Each repetition of the process yields a 

new set of poles that are similar to the previous set but not a perfect replica.  Pole clusters 

form corresponding to modes of the structure and are assumed to have a Gaussian 

distribution.  Thus, based on poles segregated to one cluster, a Gaussian distribution is fit 

to the pole locations on the complex plane.  This distribution yields both the mean of the 

cluster as well as its variance.  The mean of each cluster 
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associated with a mode is then compared to a corresponding cluster generated from 

baseline data (e.g., from the undamaged structure).  A damage index is devised, based on 

the separation distance between the mean of the unknown state cluster and the baseline 

cluster for a given pole cluster.  The mean separation distance associated with the ith 

sensor and jth mode is defined as ∆i,j.  The damage index also takes into account 

uncertainty through the derived standard deviation of the identified pole locations, σi,j 

(Figure 5.2).  The final resulting index is the separation distance divided by the standard 

deviation value: 

 

,ܫܦ ൌ
Δ୧,୨

σ୧,୨
 (5.23)

 

 

Figure 5.2. Mean separation distance criterion. 
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At the sensor-level, every unit in the network will identify a damage index value 

corresponding to each identified system pole cluster (the number of pole clusters is 

defined by the user).  However, because pole cluster correspond to mode, which is a 

global characteristic of the system, it is prudent to combine the pole cluster information 

over all measurement locations.  Hence, these individual damage indices must be 

integrated into a network-level damage level characterization (Figure 5.3).  This end is 

accomplished using a weighted average of the individual damage index results.  The 

weighting factors are taken from the observability grammian, WO (Chen 1999): 

ࡻࢃ ൌ න ఛ݁ఛ݁
ஶ


݀߬ (5.24)

 

Figure 5.3. Graphical overview of sensor-level identification and network-level 
integration tasks. 
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where A is the state-space state matrix, C is the state-space observer matrix, and τ is a 

variable of integration.  The observability grammian is a relative measure of the average 

amount of energy one might expect to measure from a system for a given sensor 

configuration (Chen 1999).  In sensor (or actuator) placement problems, the relative 

“size” of the observability (or controllability) grammian (as measured by its trace) is used 

as an indication of the effectiveness of one sensor (or actuator) layout versus another 

(Hac and Liu 1993; Mirza and Van Niekerk 2003).  If the sensors used in the network 

have similar noise characteristics, then the size of the single-sensor observability 

grammian characterized by: 

 

ࡻࢃ ൌ න ఛ݁
݁ఛ

ஶ


݀߬ (5.25)

 

where Ci is the ith row of C and yields a relative estimate of the signal-to-noise ratio 

realized at the ith sensor given the sensor’s location and the dynamic properties of the 

structure.  By decomposing the observability grammian into modal coordinates through a 

simple change-of-basis operation: 

 

ࡻതതതࢃ ൌ (5.26) ࢶࡻࢃଵିࢶ

 

where Φ is the linear transformation matrix to modal coordinates (whose columns are the 

mode shapes or eigenvectors of the structure), the contribution from each mode of the 

system, wi,j, may be decoupled from the remaining modes in 2x2 blocks along the 
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primary diagonal of the observability grammian in modal coordinates (Hac and Liu 

1993): 

 

ࡻതതതࢃ ൌ 
ሾ࢝୧,ଵሿ ڮ ሾሿ

ڭ ڰ ڭ
ሾሿ ڮ ሾ࢝୧,୰ሿ

 (5.27)

 

where r is the number of identified modes.  This fact means that, when considering a 

single sensor at a time, the relative contribution to the modal grammian from each mode 

can be determined.  These contributions found from the traces of the modal coordinate 

blocks (normalized across all contribution weights) are used as damage index weights for 

damage indices realized by each sensor within the network and for each mode (and its 

associated pole cluster) identified by that sensor.  For a system with s sensors, the 

aggregated damage index, ܫܦതതത, is:   

 

തതതܫܦ ൌ  
หtraceൣ࢝୧,୨൧ห

ට∑ ൫traceൣ࢝୧,୩൧൯ଶ୰
୩ୀଵ

כ


ୀଵ

௦

ୀଵ

,ܫܦ  (5.28)

 

By weighting contributions in this manner, measurements corresponding to high signal 

energy (and thus, large signal to noise ratio) are given higher priority than low-energy 

measurements. 
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5.3. Z24 Bridge 

Dynamic data for a large number of damage cases is available for the Z24 Bridge 

from the System Identification to Monitor Civil Engineering Structures (SIMCES) 

project (Wenzel and Pichler 2005).  In 1998, the Z24 Bridge located between Utzenstorf 

and Koppigen in Switzerland (Figure 5.4) was heavily instrumented and monitored as it 

was progressively damaged to provide researchers with vibrational data corresponding to 

those progressive damage levels.  The bridge is a three span bridge with exterior spans of 

14 m each and a center span of 30 m with concrete piers between.  The bridge is 

constructed using prestressed, two-cell box girders with tendons located in the webs of 

the girder.  A description of the SIMCES Z24 Bridge project is available by De Roeck, et 

al. (2000) with a description of the progressive damage states provided by Krämer, et al. 

(1999).  Peeters and Ventura (2002) have compiled a comparison of several modal 

 

Figure 5.4. Z24 bridge (Photo courtesy of Verbraken (1999)). 
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analysis techniques employed on the Z24 bridge data set including peak picking 

(Womack and Hodson 2001), frequency domain decomposition (FDD) (Luscher, et al. 

2001), rational fraction polynomial (Schwartz and Richardson 2001), ARMA two-stage 

least squares (Fassana, et al. 2001), and subspace identification (Luscher, et al. 2001; 

Marchesiello, et al. 2001).  A number of health monitoring methods have also been 

proposed using the Z24 Bridge data set for validation including finite element model 

updating (Garibaldi, et al. 2003; Teughels and De Roeck 2004), control charts (Kullaa 

2003), modal frequencies and shapes (Maeck and De Roeck 2003), and subspace 

identification models (Mevel, et al. 2003).  Intrinsic in these methods is the assumption 

that a centralized data server is available for data archival and processing.  In a wireless 

sensor network, distributed data processing is preferred in order to avoid unnecessary and 

power draining transmissions of raw data from every sensor in the network (Lynch and 

Loh 2006). 

The best practice for system identification requires division of the data into fit and 

validation sets.  The fit set is used to build the model (in this study, the ARX and ARMA 

models) and choose its size.  The validation set is then used to check the veracity of the 

model against new data to help avoid over fitting the data and its noise.  Furthermore, the 

health monitoring aspect of this study requires additional data once the model size and 

structure has been determined.  One set of data is required to choose weights for the 

damage index terms and another set of data is required to test those weights to determine 

their effectiveness in separating damaged cases from undamaged cases.  In this study, 

sensor data is taken from four locations located near the center of the span and along the 

edges of the bridge.  Because the bridge is very densely instrumented, accelerometers are 
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very close together: 1.5 m apart.  During each test, 65,536 data points are collected from 

each sensor.  To allow for 10 poles per cluster and an adequate number of data points to 

fit per pole, adjacent accelerometers are considered to be located at approximately the 

same location.  This practice allows use of the entire time history from a sensor location 

for modeling.  An adjacent sensor may then be used to fit the damage index terms while 

the adjacent sensor on the other side provides the final validation data for the health 

monitoring application.  The locations of the vertical accelerometers used in this study 

are depicted in Figure 5.5. 

 

5.3.1. Z24 Bridge Progressive Damage Tests 

The Z24 Bridge progressive damage tests offer an unprecedented opportunity for 

comparison of the vibrational characteristics of a single structure under a wide array of 

damage and distress conditions.  The bridge is heavily instrumented with accelerometers 

and excited vertically by the use of two hydraulic shakers located on the bridge deck, the 

first being a SCHENK POKK/N capable of producing forces between ±5 kN in a 

 

Figure 5.5. Sensor Layout of accelerometers on the Z24 bridge. 
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frequency band between 2.3 and 100 HZ; the second shaker is a SCHENK PLz 25 N Q 

160 capable of generating ±20 kN between 1.5 and 60 Hz.  Both shakers were configured 

to output random, broadband signals.  Two HBM C2 force transducers were available to 

record the force imparted by each of the shakers to the structure; the force signal is taken 

as the input to the system.  The outputs considered are the vertical accelerations (recorded 

by Kinematics, Inc. FBA 11 uniaxial force balanced accelerometers) of the deck at sensor 

locations 1, 2, 3, and 4 (Figure 5.5).  The sampling rate used is 100 Hz. 

Progressive damage tests are executed strategically with reversible and less extensive 

forms of damage inflicted on the structure first, and more extensive, irreversible damage 

inflicted on the structure later.  First, a hinge is added in one pier (Pier 3) to facilitate 

reversible damage of the form of pier foundation settlement or rotation.  This case is 

regarded as the baseline case to which the other progressive damage cases are compared.  

Following the installation of the hinge, the pier is progressively lowered by 20 mm, 40 

mm, 80 mm, and 95 mm.  Audible and visible cracking is observed between the 40 mm 

level and the 80 mm level with additional cracking occurring between the 80 mm and 95 

mm levels (Krämer, et al. 1999).  Once the pier is restored, the footing is rotated resulting 

in a 15 mm differential settlement from one side to the other.  Upon completion of these 

progressive damage tests, the pier is restored to its original position and the irreversible 

damage tests are undertaken.  Spalling of concrete and a landslide at the East abutment 

are simulated, followed by a cut in the concrete connection between one pier column and 

the box girder to simulate a concrete hinge failure (Pier 4).  Finally, the pretension system 

is attacked by destroying 2 and then 4 anchor heads, and then with 2 and 4 tendons (54 
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and 100 wires respectively) cut.  A summary of the 16 progressive damage tests is 

resented in Table 5.2 (Krämer, et al. 1999). 

Of particular interest are progressive damage tests 5 and 6 in which the pier 

settlement is greatest.  Besides the audible and visual cracking reported during the 

lowering of the pier to these points, noticeable changes in the eigenvalues of the system 

are observed between these cases and the baseline case.  Previous studies of the Z24 

Bridge data set using more computationally intensive algorithms have demonstrated that 

these damage cases are very detectible by more traditional methods (Garibaldi, et al. 

2003; Kullaa 2003; Maeck and De Roeck 2003; Mevel, et al. 2003; Teughels and De 

Roeck 2004).  Hence, the method presented in this study must also be able to detect 

damage for these cases in order to have merit. 

 

5.3.2. Modeling of the Z24 Bridge 

The modeling data set is taken from the baseline set (progressive damage test 2) and 

is divided in half with the first half used to build time-series models of increasing sizes 

and the second half reserved as validation data to confirm the model size.  ARX models 

Table 5.2. Description of progressive damage tests. 

Test 
Number

Description                                               
(Reversible Damage)

Test 
Number

Description                        
(Irreversible Damage)

1 No Damage (missing/corrupted data) 9 Concrete Spalling: 12 m2

2 No Damage, Pier Hinge Added (Baseline) 10 Concrete Spalling: 24 m2

3 Pier 3 Settlement: 20 mm 11 Landslide at Abutment
4 Pier 3 Settlement: 40 mm 12 Concrete Hinge Failure
5 Pier 3 Settlement: 80 mm 13 Anchor Head Failure (2)
6 Pier 3 Settlement: 95 mm 14 Anchor Head Failure (4)
7 Pier 3 Foundation Tilt 15 Tendon Wire Failure (54/2)
8 No Damage, Pier 3 Restored 16 Tendon Wire Failure (100/4)  
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are automatically fit for m and n coefficients (Equation 5.1) ranging from 2 to 100 and 

the resulting transfer function compared to the experimental transfer function from the 

validation data set in the frequency domain.  During the course of the investigation, 

models with direct transmission terms (where m and n are equal) produce the lowest 

mean-squared (LMS) error between theoretical and experimental transfer functions.  

Plotting the LMS error versus model size yields Figure 5.6.  Ultimately, a 60 pole, 60 

zero model is selected that achieves good improvement in LMS error versus lower order 

models compared with the increase in computational complexity.  The transfer function 

comparison is presented in Figure 5.7.  Because the structure is excited simultaneously by 

two shakers, a multiple input single output (MISO) least squares ARX model is fit to the 

input data and single-node output. 

Poles that are highly consistent in their locations are most useful for automated health 

monitoring.  For a structure of this type, this fact makes less desirable poles that the 

algorithm places on the real axis as well as higher order poles.  Analysis of the baseline 

data from a number of sensors demonstrated that the least-squares algorithm occasionally 

placed pairs of poles on the real axis.  The health monitoring algorithm is programmed to 

ignore those poles.  The remaining poles occur as complex conjugate pairs and are 

distributed around (and inside of) the unit circle.  Additionally, higher-order poles are 

found to cluster poorly, exhibiting much larger deviations than lower order poles and 

therefore, are not used by the health monitoring algorithm.  Once time-series models are 

assembled for the test cases, the identified poles must be automatically sorted.  The 

sorting is accomplished by a sorting algorithm that minimizes the LMS error, or the 

distance between a set of poles and the baseline means.  When a set of 60 pole clusters is 
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generated, the sorting algorithm first discards any poles on or below the real axis (poles 

below the real axis are redundant).  Then it searches every ordered list of the remaining 

poles, looking for the permutation that yields the smallest LMS error of the distance 

between poles.  In total, there are 12 unique pole clusters (see Figure 5.8), with 10 poles 

per cluster, that are realized from 6000 samples per set of poles.  This process is repeated 

for every progressive damage test. 

 

  

 

Figure 5.6. Frequency domain error versus ARX model size (where m = n). 

 

 

Figure 5.7. Experimental and identified transfer functions. 
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5.3.3. Z24 Bridge SHM Results 

The first twelve pairs of poles (those with the lowest eigenvalue) identified by the 

automated ARX algorithm are selected for structural health monitoring and are 

summarized in Table 5.3.  The mean pole location for the baseline cluster defines the 

location of these poles.  These poles have modal frequencies ranging from 1.97 to 19.87 

Hz; nine of these poles are identified in the comparative study of modal analysis 

techniques for the Z24 Bridge conducted by Peeters and Ventura (2002). Pole clusters 

along with first standard deviation level curves are presented for the twelve baseline 

poles in Figure 5.8.  The operation deflection shapes at the sensor locations for the twelve 

poles of interest are calculated. 

 

Movement of pole clusters can be observed qualitatively as the damage tests progress.  

First, looking at the reversible progressive damage tests [Figure 5.9(a), 5.9(d), and 5.9(g)] 

and focusing on the closely spaced pole clusters 5 and 6, small changes can be observed 

in the pole locations between tests 2-4.  Larger movement is observed for tests 5 and 6 

Table 5.3. List of modal frequencies of baseline poles used in health monitoring 
algorithm. 

Mode Modal Frequency Identified in
Number (Hz) Peeters and Ventura (2002)?

1 1.97
2 3.88 Yes
3 4.94 Yes
4 7.22
5 9.78 Yes
6 10.27 Yes
7 12.62 Yes
8 13.66 Yes
9 15.68
10 17.34 Yes
11 19.29 Yes
12 19.87 Yes  
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with the pole clusters returning back near the original baseline location during tests 7 and 

8.  Second, looking at the irreversible progressive tests [Figure 5.9(b-c), 5.9 (e-f), and 5.9 

(h-i)] and again focusing on pole clusters 5 and 6, shows less overall movement of the 

pole clusters as the damage tests progress but a discernable jump is observed during 

damage case 12 with future progressive damage tests yielding pole clusters centered close 

to this new location. 

Applying the damage index terms provides a quantitative assessment of pole 

movement during the damage test cases.  Using the modal grammian weighting factors, 

individual damage index values computed from individual sensing nodes (one for each 

mode on each sensor) can be combined.  The combined mean separation distance 

criterion shows a very large discrepancy between the poles of progressive damage tests 5 

and 6 and the rest of the progressive damage tests.  This result can be seen in Figure 5.10 

where higher damage index values suggest a greater probability of damage.  Here, 

 

Figure 5.8. Twelve identified pole clusters used for structural health monitoring of the 
Z24 Bridge. 
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progressive damage tests 5 and 6 show very high damage indices indicating very high 

probability of damage where progressive damage tests 7 and 12 (and all subsequent tests) 

show elevated damage indices indicating an increased probability of damage.  The 

  

Figure 5.9. Sample pole clusters at Pole Cluster 2 (a-c), Pole Cluster 5 (d-f), and Pole 
Cluster 6 (g-i). 
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vibrational properties of the restored pier (progressive damage test 8), as measured by the 

damage index, appear to be quite similar to the original baseline properties.  It also 

appears that there is very little change in the linear behavior of the system after 

progressive damage test 12. 

 

5.4. Six-Story Sear Structure 

The test structure that is the subject of this study is a six-story, one-third scale, steel 

building located at the National Center for Research in Earthquake Engineering 

(NCREE) at National Taiwan University (NTU).  The structure has a floor-to-floor height 

of 1.0 m, width of 1.0 m, and depth of 1.5 m.  Floors are 2.0 cm thick plates supported on 

four sides by 5 cm x 5 cm L-sections.  The L-sections are bolted to 2.5 cm x 15 cm bar 

columns that run continuously the entire height of the structure (Figure 5.11).   

 

 
Figure 5.10. Z24 bridge damage index results from all damage cases. 
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The structure is placed on a 5 m x 5 m, 6 degree of freedom (DOF) shaking table to 

simulate earthquake excitation.  The structure is then instrumented with a network of 19 

Narada wireless sensors with accelerometers attached, two on each floor measuring 

acceleration in the weak lateral direction of the structure, one on each floor measuring 

acceleration in the strong lateral direction of the structure, and one at the base measuring 

lateral ground motion.  The base unit is configured to broadcast ground motion 

measurements to the rest of the network to be used as the input signal and, as such, is 

supplied with a permanent power supply, whereas the remote units rely on battery packs 

for power.  A tethered data acquisition system is also installed on the structure for 

comparison to the wireless system results.  Operation of the wireless system was done 

 
Figure 5.11. Six-story laboratory steel test specimen. 
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through a laptop computer with its own CC2420 transmitter.  Test runs consist of 

unidirectional (lateral weak direction) and bidirectional (both lateral directions) broad 

spectrum excitations of the structure using the shaking table.  Migration of the system 

poles is measured through use of the migration index. 

 

5.4.1. Simulation of Damage to the Six-story Structure 

To simulate damage, first the structure is stiffened.  Relatively stiff chevron bracing is 

installed between all adjacent floors.  At the bottom of each brace, stiffness elements 

consisting of 1.0 cm x 10.5 cm plates, loaded in their weak direction are connected 

between the bracing and the floor below.  This stiffened structure is considered to be the 

baseline, or initial, undamaged structure, that the control models are to be based upon.  

Damage is then introduced by replacing original stiffness elements (designated B3) with 

weaker elements (designated B2 or B1) to simulate reduced story stiffness due to 

damage.  Alternatively, stiffness elements may be removed altogether.  B2 represents a 

loss of story stiffness of approximately 20% versus B3, B1 represents a loss of 

approximately 30%, and the removal of the stiffener represents a loss of approximately 

40% versus B3.  By changing stiffness in this manner, reversible simulated damage may 

be introduced into the structure without causing any long-term harm to an expensive test 

specimen.  The use of reversible damage is critical for validation of structural health 

monitoring methods as it allows the baseline case to be repeated to assure that the 

damage feature extracted from the response data is correlated to damage and not just by 

the collection of different data or the passage of time.  With this motivation in mind, 

damage case D1 represents the baseline case, with the strongest stiffness element 
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installed at each floor.  Damage cases D2-D4 depict loss of stiffness spreading from the 

base upwards.  For damage case D5, the strongest stiffness elements are reinstalled and 

the baseline case is repeated.  Finally, damage cases D6-D8 represent sparse damage 

cases with large degrees of damage occurring at on isolated floors.  Table 5.4 tabulates 

which braces are used in each damage case (case 1 through 5), Fig. 5.12 depicts the weak 

bracing elements, while Table 5.5 summarizes the size of the brace elements used.   

 

5.4.2. Modeling of the Six-story Structure 

Input/output and output only models are constructed from acceleration data collected 

by the wireless sensors from this structure during applied uniaxial, lateral white noise 

table motions (scaled such that the peak acceleration amplitude is 0.5 m/s2).  Model order 

is selected from the input/output data.  Multiple ARX models with equal numbers of 

inputs and outputs (that is m is equal to n in Equation 5.1) are constructed from the six-

story test structure acceleration data.  The poles identified by those models are compared 

to theoretical modes computed based on the structural properties of the specimen.  A 

model order employing 36 poles is required to cause the lower frequency poles to 

converge to the theoretical values.  This convergence is verified by use of a stability 

diagram, Figure 5.13.  The poles corresponding to the lowest set of six resonant 

Table 5.4. Damage case bracing element schedule. 
FLOOR D1 D2 D3 D4 D5 D6 D7 D8 

6F B3 B3 B3 B3 B3 B3 B1 B3 
5F B3 B3 B3 B3 B3 B3 B3 B3 
4F B3 B3 B3 B3 B3 Removed Removed Removed 
3F B3 B3 B3 B2 B3 B3 B3 B3 
2F B3 B3 B2 B1 B3 B3 B3 B3 
1F B3 B2 B1 Removed B3 Removed Removed B3 
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Figure 5.12. Bracing elements, (a) left to right, B3, B2, and B1, (b) B3 installed, (c) 

B2 installed, (d) B1 installed, (e) braces removed. 
 
 

Table 5.5. Bracing description. 
 Length Width Thickness 
 (cm) (cm) (cm) 

Columns 95 15 2.5 
Brace B1 21 3 1 
Brace B2 21 5 1 
Brace B3 21 10 1 
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frequencies are selected (ignoring apparent poles that are mathematical artifacts of the 

least-squares fit process identified by unrealistically high damping ratios) for migration 

tracking as these poles correspond to the strong-axis lateral deflections of the structure 

stories, see Figure 5.14.  The remaining poles are not used for health monitoring, only 

convergence of the time-series model.  This model order is then used for the input/output 

model and for the lower-order ARX step of the output only model fit.   

 

5.4.3. Six-story Shear Structure Results 

Pole clusters are obtained from output measured at each floor for all damage cases 

under both input/output (ARX) and output-only (ARMA) regimens.  The clusters 

obtained at each damage case are compared to the undamaged case, D1, via the mean 

 

Figure 5.13. Stability diagram generated by the 5th floor, front sensor. 
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separation distance damage index.  Results from all of the sensors are then averaged, and 

weighted by contribution to the observability grammian (Figure 5.15).  Sample pole 

clusters from the input/output regimen are presented in Figure 5.16 to demonstrate their 

migration in the z-plane.  The degree of migration from the original baseline location to 

the test location is dependent upon the severity of the damage (loss of stiffness).  Note 

that the cluster associated with damage case D5 returns to its original location as 

expected, since D5 is a repeat of the baseline case.  Some poles shown in Figure 5.16 

appear to be poorly fit and lie relatively far outside of their pole cluster.  These 

discrepancies are due to inadequate excitation during data measurement, transient 

 
Figure 5.14. Identified poles in the upper right quadrant of the unit circle for damage 

cases 1-8. 
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numerical issues in the algorithm, or sorting errors, all of which are relatively rare.  The 

inherent redundancy of the health monitoring method, namely taking results from 

multiple data runs, multiple modes, and multiple sensors, helps to mitigate the effects of 

these errors so that the final damage index reported by the network is accurate.  For this 

study, the average damage indicies reported by the network reflect well the level of 

damage inflicted upon the structure.  The damage indicies for the input/output case are 

presented in Figure 5.17(a), and those of the output-only case are presented in Figure 

 

 
Figure 5.15. Modal grammian weighting factors for damage index aggregation. 

 

 
Figure 5.16. Pole migration of pole cluster 5 measured by the 5th floor sensing unit;  

left: damage cases D1-D5; right: damage cases D5-D8. 
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5.17(b).  Both the input/output and output-only cases return elevated damage index levels 

in the presence of damage, though the output-only method does so at the expense of the 

extra computation step fitting the ARMA model. 

 

5.5. Structural Health Monitoring Conclusions 

This chapter presents a simple set of algorithms for health monitoring of civil 

structures that is suitable for distributed implementation within a wireless sensing 

network and which provides physical meaningful interpretation (based on the 

observability grammian) to explain differing damage estimates realized from different 

nodes within the wireless sensor network.  This method takes full advantage of the 

distributed computing power available within a wireless network without requiring the 

power and bandwidth intensive centralization and transmission of raw data from the 

sensor data nodes.  The wireless nodes are free to do most of their computations 

independently of the network and only conferring to produce the final damage index 

value that would potentially trigger the alarm.  Basing the damage detection algorithm on 

   

  (a) (b) 

Figure 5.17. Network-level damage indices; (a) input/output identification; (b) output-
only identification. 
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the locations of system poles in the z-plane gives the network information about not only 

changes in frequency, but also damping of the monitored structure.  By taking into 

account both the input and the output of the system, variability in the pole locations due 

to inconsistent excitation can be significantly reduced over output-only or ambient 

monitoring methods.  If output-only is necessary, the two step ARMA model can 

significantly reduce variability in the identified model parameters due to inconsistent 

excitation.   

The method is successfully applied to two validation structures: the Z24 bridge data 

set and a six-story laboratory steel structure.  On the Z24 bridge data set, a high-order 

ARX model (60 poles and 60 zeros) produces poles that are consistent enough that an 

automated sorting algorithm can properly form pole clusters for the first 12 modal 

frequencies that are the basis of the health monitoring algorithm.  The method is found to 

be effective in detecting damage due to large settlement of the pier (progressive damage 

tests 5 and 6) with the restored pier pole locations returning to their baseline locations 

(progressive damage test 8), as well as concrete hinge failure (progressive damage test 

12).  Detection of progressive damage tests that had little impact on stiffness and 

damping proved to be more challenging.  The method could be tested using the Narada 

wireless sensor on the six-story laboratory steel structure.   There, simulated damage in 

the form of replaceable weak stiffness elements could be easily detected by the method 

and the relative degree of damage identified.  Because the method relies on global 

properties of the system, localization of damage is also an ongoing effort.  Also, 

incorporation of correction factors for environmental variability (e.g., temperature and 

humidity effects) is a necessary future step for practical implementation. 
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While this method is not intended as a replacement for hands-on inspection 

techniques or sound engineering judgment, it can provide autonomous early warnings for 

damage that affects dynamic performance.  The method is based on global modes of the 

structure and is effective in identifying relatively severe damage that would be associated 

with extreme loading events (e.g., large earthquakes).  Further work in application of the 

method to local modes (e.g., Lamb or Rayleigh wave modes) is necessary to detect more 

subtle and localized damage.  Ultimately, a hybrid global/local damage detection scheme 

would provide maximum coverage of the entirety of the structure as well as maximum 

sensitivity to structural damage.  Potentially, a structure may be characterized by both 

closely spaced modes and very large migration of poles due to the effects of damage, and 

the automated pole sorting algorithm is likely to return excessive errors that may have 

unpredictable effects on the damage estimate returned by sensors within the network.   

To minimize the effect of unusual transient loading conditions, as well as data and 

sorting errors, this method combines and averages results from multiple sensors to 

increase its reliability and reduce the frequency of false alarms.  By assigning very low 

weights to results derived from sensor/mode combinations that are characterized by poor 

excitation, the effect of low sensitivity damage information on the final network-level 

damage estimate is minimized.  With its embedded computation of system poles, the 

method could also be used to update feedback control algorithms such as that proposed in 

the following chapter.  Finally, future work to bring this structural health monitoring 

method into an adaptive control paradigm would be very productive and will be 

discussed further in Chapter 7, Conclusions and Future Trends.  
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CHAPTER 6 

 

STRATEGIC NETWORK UTILIZATION IN A WIRELESS STRUCTURAL 

CONTROL SYSTEM FOR SEISMICALLY EXCITED STRUCTURES 

 

The benefits associated with structural control include the mitigation of undesired 

structural responses and reduction in the probability of damage to structural components 

during seismic events.  Structural control systems in current use depend on extensive 

wired communication systems to connect sensors and actuators with a centralized 

controller.  While wired architectures are appropriate when control systems are small, the 

cost and installation complexity of tethered systems increases as the control system grows 

large (i.e., defined by hundreds of nodes).  Alternatively, wireless sensors are proposed 

for use in large-scale structural control systems to keep costs low and to improve system 

scalability.  Wireless sensors are capable of collecting state data from sensors, 

communicating data between themselves, calculating control actions, and commanding 

actuators in a control system.  However, bandwidth and range limitations of the wireless 

communication channel render traditional centralized control solutions impractical for the 

wireless setting.  While computational abilities embedded with each wireless sensor 

permit fully-decentralized control architectures to be implemented, strategic utilization of 
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the wireless channel can improve the performance of the wireless control system.  

Towards this end, this chapter presents a partially-decentralized linear quadratic 

regulation control scheme that employs redundant state estimation as a means of 

minimizing the need for the communication of state data between sensors.  The method is 

validated using numerical simulations of a seismically excited six-story building model 

with ideal actuators.  Additional experimental validation is conducted using a full-scale 

physical realization of the six-story building.  A wireless sensor network commanding 

magnetorheological (MR) dampers is shown to be effective in controlling a multi-story 

structure using the partially decentralized control architecture proposed. 

 

6.1. Wireless Control Introduction 

While it has been shown that structural control systems can be effective in mitigating 

the dynamic response of large-scale structures (Soong 1990; Housner, et al. 1997; 

Spencer and Nagarajaiah 2003), system costs and long-term reliability concerns still 

remain as barriers to widespread adoption of such systems.  Semi-active structural control 

devices have recently been developed to address these cost and reliability concerns.  

Compared to large active actuators, semi-active structural control devices such as 

magnetrorheological (MR) dampers (Dyke, et al. 1998; Hatada, et al. 2000; Gavin, et al. 

2001), electrorheological (ER) dampers (McMahon and Makris 1997), variable-orifice 

dampers (Kurino, et al. 2003), and variable-stiffness devices (Nagarajaiah and Mate 

1998) are relatively inexpensive to design and fabricate, require little power, and can be 

powered from battery power supplies (Kurata, et al. 1999). 
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Semi-active control systems have been successfully deployed in numerous structural 

applications (Spencer and Nagarajaiah 2003; Kajima-Corporation 2006).  The forces 

achievable with these semi-active devices are smaller in magnitude than those achievable 

by an active device (e.g., active mass damper).  However, a highly effective control 

system can be produced when a large number of semi-active devices are installed in a 

single structure.  Recently completed structures employing semi-active control 

technology include the 54-story Mori Tower employing 356 semi-active hydraulic 

dampers (SHD), the 38-story Nihonbashi Mitsui Tower employing 96 SHD, and the 

Shiodome Tower, employing 88 SHD, all located in Tokyo, Japan (Kajima Corporation 

2006).  As the number of control devices increases, the vulnerability of the control 

system as an entity to the failure of a single control device is reduced. 

Use of semi-active control devices in a centralized control system may not be a 

complete solution to the aforementioned cost and reliability problems often associated 

with structural control.  While semi-active devices are less costly than active actuators, as 

the number of control devices grows, the cost savings realized by use of semi-active 

devices quickly erodes due to the high cost of the extensive wiring needed between 

sensors, actuators, and controllers.  Additionally, centralized computation of command 

forces requires a central computer to collect data, calculate control forces, and command 

actuators in a short time frame; these calculations get more difficult to complete in the 

allocated time as the system grows.  One solution to these two problems is achieved in 

Kajima Corporation’s HiDAX system which is a fully-decentralized control system; SHD 

devices are distributed throughout a structure to independently provide control forces 

between consecutive floors (Kajima Corporation 2006). No communication is offered 
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between SHD devices with each device calculating a control action based solely on its 

collocated sensor output.  The actions of these controllers are derived globally, but in 

operation they act independently, not sharing data.   

Improving coordination between distributed controllers would obviously improve the 

results their use yields.  Wireless sensors have been successfully employed for 

monitoring civil structures (Lynch, et al. 2004; Lynch and Loh 2006).  Wireless sensors 

can be installed without the expense of cable installation, providing a low cost link 

between distributed elements of the monitoring system.  Wireless sensors with embedded 

computational power are able to perform on-board data interrogation, eliminating the 

need to transmit raw data to centralized servers (Straser and Kiremidjian 1998).  Recent 

work has demonstrated the ability of wireless sensors to act as active sensors 

(Chintalapudi, et al. 2005) and controllers (Kawka and Alleyne 2004).  As controllers, 

wireless sensors are responsible for collecting sensor data, calculating desired control 

forces, and commanding actuators for centralized (Wang, et al. 2006a; Loh, et al. 2007) 

and decentralized (Wang, et al. 2006b; Lin, et al. 2007; Loh, et al. 2007) control 

architectures. 

Wireless control systems, have inherent limitations that prevent them from functioning 

as perfect replacements for cable-based control systems.  For example, wireless data 

transmissions add latency, thereby reducing sampling frequencies and the overall 

effectiveness of the controller.  Another concern is data loss.  Self-acknowledging 

protocols for data transmission (e.g., TCP/IP) guarantee data transmission but also 

introduce additional delay.  Several established transmission protocols used in real-time 

wireless feedback control, including polling, time division multiple access (TDMA), 
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random access (RA) with and without acknowledgement, and carrier sensing multiple 

access/collision avoidance (CSMA/CA), have been evaluated (Liu and Goldsmith 2004).  

Wireless feedback schemes using the IEEE 802.11b protocol are proposed with sample 

rate adaptation used to overcome the effects of communication latency (Colandairaj, et 

al. 2007).  However, this approach introduces random, lengthy delays into the 

communications.  Network protocols without acknowledgement (e.g., UDP) can 

eliminate this source of latency entirely, but require a control algorithm that is tolerant of 

data loss (Ploplys, et al. 2004).  Another functional constraint of wireless 

communications is that the available communication bandwidth is fixed (Arms, et al. 

2004).  In large control systems, care must therefore be taken not to exceed the channel 

capacity.  The range of the wireless signal is also limited.  Finally, wireless 

communication is power-intensive.  Especially for battery powered wireless sensors, 

wireless radios have greater power requirements than any other hardware component 

(Lynch and Loh 2006; Nagayama, et al. 2007). 

To overcome these wireless sensor limitations, a partially-distributed control scheme 

is proposed that is tolerant of data loss and in which the available wireless bandwidth is 

strategically leveraged to improve control performance.  The proposed system is an 

adaptation of a partially-distributed control scheme developed for networked control by 

Yook et al. (2002).  In it, wireless sensors with actuation capabilities (i.e., Narada units) 

are responsible both for collecting sensor output and supplying actuator commands based 

on linear quadratic regulation.  In addition, each are embedded with identical estimators, 

in this case, steady-state Kalman estimators.  The resulting state estimates are compared 

to locally available measured data and used for feedback control force computation when 
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errors between measured and estimated state data are small.  Only when the error exceeds 

a threshold value specified by the designer are the measured values wirelessly transmitted 

to the network of sensors, allowing other sensors to update their own estimates.    

Detailed derivation of the method is presented in the following section followed by a 

review of wireless sensing for civil infrastructure.  Then, results from simulations and an 

experimental study using Narada wireless sensor units to control and actuate MR 

dampers for seismic disturbance rejection in a six-story building model are presented and 

discussed. 

 

6.2. Redundant Estimator Network Control Architecture 

As opposed to traditional centralized systems (Figure 6.1(a)) where system outputs 

are communicated to a single controller for formulation of control actions, a wireless 

control system is assembled from a network of wireless sensors that serve as a 

coordinated set of distributed controllers.  Each wireless sensor is responsible for 

measuring system outputs, calculating control actions, and issuing command signals to 

actuators.  The resulting architecture (Figure 6.1(b)) differs significantly from the 

centralized approach in that: (1) the centralized controller is abandoned for an 

architecture in which each actuator has its own controller (i.e., a wireless sensor); and (2) 

the dedicated wired communication system is replaced by a flexible wireless 

communication channel.   

There are challenges associated with real-time control on a wireless network 

including power consumption (Lynch and Loh 2006) and fixed bandwidth (Arms, et al. 

2004).  One possible approach to addressing these limitations is to fully decentralize the 
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control system by eliminating the communication between controllers.  Such an approach 

has proven effective for semi-active hydraulic dampers deployed in large civil structures 

(Kurino, et al. 2003).  However, decentralization does not take advantage of the benefits 

offered by communication between controllers.  Alternatively, a centralized control 

system can be replicated upon a wireless control system by forcing all wireless sensors to 

broadcast their measurements at every time step.  Unfortunately, this approach places a 

hefty demand on the available communication bandwidth; hence, the approach is not 

scalable for large wireless sensor networks.  Past work in wireless structural control 

reveals low-sample rates are required to ensure reliable data delivery when implementing 

a centralized wireless control system (Lynch, et al. 2008).  

A partially-decentralized distributed control algorithm is proposed to achieve an 

optimal compromise between the decentralized and centralized control approaches.   The 

benefits associated with data exchange between wireless sensors are preserved, while use 

of the communication channel is minimized both to keep channel performance high and 

power demands at the individual sensors low.  A redundant estimation framework first 

proposed by Yook, et al. (2002) for networked control systems is adopted.  As shown in 

Figure 6.1(b), each wireless sensor employs a Kalman filter to estimate the full state 

response, z, based upon the measured system output, yi, at the sensor’s degree-of-

freedom.  If the control system is decentralized, the state estimate would be used to 

calculate the control action, ui. In contrast, the redundant estimation framework proposed 

herein compares the estimated, y, and measured output, y, to quantify the error inherent 

in the estimator.  If the estimated state variable at the ith measurement degree-of-freedom 

is inaccurate, then the estimators executed at the other degrees-of-freedom (that are 
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derived from the same model) will also have inaccurate estimates of the ith degree-of-

freedom’s state variables.  If the error is above a threshold, the ith wireless sensor 

broadcasts the measured state variables.  Upon receipt of the true measured output from 

the ith degree-of-freedom, the other wireless sensors update their estimated states before 

calculating the control force to be applied.  In essence, wireless bandwidth is strategically 

leveraged to improve decentralized control performance as is described in the following 

sections.   

 

6.2.1. State-Space System Model 

The base-excited structural system is modeled in continuous-time as an n-degree-of-

freedom (DOF) linear time-invariant, lumped mass shear structure whose equation of 

motion is: 

 
 (a) (b) 

Figure 6.1. (a) Classical centralized controller approach to structural control; (b) 
proposed distributed control system assembled from a network of wireless sensors 

serving as controllers. 
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( ) ( ) ( ) ( )ttxttt g LuMKxxCxM d +−=++ )(&&l&&& (6.1)

with M, Cd, and K ∈ Rnxn corresponding to the mass, damping, and stiffness matrices, 

respectively.  The displacement vector relative to the base of the structure is x ∈ Rnx1, 

ground displacement is xg, and l ∈ Rnx1 is a vector in which each term is unitary.  If 

control forces, u ∈ Rmx1, are applied to the system then the actuator locations are 

described by the location matrix, L ∈ Rnxm.  The variable t represents continuous time.  

The equation of dynamic equilibrium described by Equation 6.1 can be reformulated 

in state-space as 

( ) ( ) ( ) ( )txttt g&&& EBuAzz ++= (6.2)

where the state is z T  = {xT x& T} ∈ R2nx1 and 

,22
11

nnxR
CMKM

I0
A

d

∈⎥
⎦

⎤
⎢
⎣

⎡
−−

= −−
  

,2
1

nxmR
LM

0
B ∈⎥

⎦

⎤
⎢
⎣

⎡
= −

   12nxR
0

E ∈⎥
⎦

⎤
⎢
⎣

⎡
−

=
l

 
 

With sensors installed in the structure, the measurable system output, y ∈ Rpx1, is 

represented by a linear sum of the state of the system and the applied control forces: 

( ) ( ) ( ) ( )txttt g&&FDuCzy ++= (6.3)

with C ∈ Rpx2n, D ∈ Rpxm, and F ∈ Rpx1.      

Before a digital control system can be implemented, the continuous-time state-space 

model (Equation 6.2) is converted into the discrete-time domain with time step Ts using 

the zero order hold (ZOH) discretization method (Franklin, et al. 2002):    

( ) ( ) ( ) ( )kxkkk g&&ΛΓuΦzz ++=+ 1 (6.4)

where 
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6.2.2. Optimal LQR Control 

The linear quadratic regulation (LQR) control strategy is widely employed in the 

structural control field because it offers an optimal control solution minimizing the 

response of the structure, y, while simultaneously minimizing control effort.  The LQR 

control solution determines the optimal control force trajectory, u, by minimizing the 

scalar cost function, J:    

( ) ( ) ( ) ( )( )∑
∞

=

+=
1

21)(
k

TT kkkkJ uQuzQzu  (6.5)

where Q1 is equal to CLQR
TCLQR, CLQR being a linear mapping between the state and a 

response to be regulated (ỹ = CLQRz), and  Q2 ∈ Rpxp is a symmetric positive definite 

matrix that weighs the relative importance of control effort against the structure output.  

The matrices Q1 and Q2 are often termed the state cost matrix and input cost matrix, 

respectively (Franklin, et al. 2002). 

To ensure the optimal control trajectory is physically feasible, minimization of the 

LQR cost function is constrained by Equation 6.4 through the use of Lagrangian 

multipliers (Stengle 1994).   The full derivation of the LQR control law may be found in 

any standard control text, e.g., (Bryson and Ho 1975).  The resulting linear control law is:  

( ) [ ][ ] ( ) ( )kkk TT GzzPΦΓPΓΓQu =+=
−1

2

 (6.6)
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with G ∈ Rmx2n, the linear gain matrix, and the Riccati matrix, P ∈ R2nx2n , derived from 

the solution to the algebraic Riccati equation: 

[ ][ ] 1
1

2 QΦPΓPΓΓQPΓPΦP ++−=
− TTT  (6.7)

 

6.2.3. Kalman State Estimation 

To calculate the optimal control forces using the LQR control law proposed in 

Equation 6.6, the entire state vector, z(k), is needed at each time step.  For most structural 

control systems, measurement of the complete state of the system is not an economical 

option.  Rather, the measured output of the structure, y(k), is communicated to a 

centralized controller where an estimator is implemented for estimation of the state, ẑ .  

Amongst the many methods available for state estimation, Kalman filtering is the most 

widely implemented by the structural control community (Soong 1990; Chu, et al. 2005).   

The Kalman estimator assumes the structure is disturbed at its base by the broad-band 

excitation, w(k), with a zero mean and covariance of Rw. 

( ) ( ) ( ) ( )kwkkk ΛΓuΦzz ++=+1 (6.8)

Furthermore, the output measurement of the system is corrupted by white noise, v(k) ∈ 

Rpx1 with covariance, Rv ∈ Rpxp:     

( ) ( ) ( )kkk vCzy += (6.9)

The estimation problem seeks to minimize the state estimation error covariance, Pe: 

( )( )[ ] nnxT

t

22ˆˆlim RzzzzPe ∈−−=
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 (6.10)
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First, given an estimate of the state at the last time step, ẑ(k-1), the state at the current 

time step can be predicted: 

( ) ( ) ( )11ˆ −+−= kkk ΓuzΦz  (6.11)

However, the estimate can be improved by taking into account the measurement error at 

the current step:  

( ) ( ) ( ) ( ) ( )( )kkkkk zCyLzz −+=ˆ (6.12)

The estimator gain matrix, L(k) ∈ R2nxp, is intended to minimize the error inherent to 

state estimation by considering the error in the measurement.  The estimator gain is time 

variant but will settle to a steady state value over the course of the control system 

execution (Franklin, et al. 2002).  As a result, the steady state estimator gain is 

implemented in most control systems to keep the implementation of the Kalman filter 

simple.  Derivation of the steady-state estimator gain matrix mimics that of the linear 

quadratic regulator with a nonlinear Riccati equation recursively solved for the steady-

state error covariance, Pe. 

 

6.2.4. Redundant Estimation and State Recovery 

An independent Kalman estimator is designed for each degree-of-freedom of the 

system as shown in Figure 6.1(b).  To ensure the estimation states are identical across the 

system, the same model of the system (Γ, Φ, and Λ), disturbance covariance, Rw and 

noise covariance, Rv, are employed in deriving each Kalman estimator.  The only 

difference in the derivations is the output matrix, C, that is uniquely defined for each 

degree-of-freedom.   
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With an estimator embedded in each wireless sensor, the sensors can locally calculate 

a control force, u, based upon their state estimate, z .  Should a pure decentralized 

architecture be adopted, the control system performance would be limited by the quality 

of the estimator.  Hence, the performance of the decentralized control system can be 

improved if the wireless communication channel is utilized.  In the redundant estimator 

framework, state recovery is proposed as a mechanism by which estimator performance 

can be improved without placing a hefty burden on the wireless channel (Yook, et al. 

2002).   

State recovery consists of estimators exchanging measurement data when estimation 

errors are large.  Each estimator in the control system compares its locally measured 

system output, yi, to that estimated, iy , where:   

( ) ( )kk ii zCy = (6.13)

The error between the measured and estimated state response is defined as: 

ii yyE −= (6.14)

where E ∈ Rpx1.  Should the error exceed a predefined threshold, then the wireless sensor 

replaces the estimated state variables with those measured.  Additionally, the 

measurement is transmitted to the wireless sensor network, thus allowing other estimators 

to “recover” the accurate (i.e., measured) state value.  In this manner, state estimates are 

synchronized throughout the wireless network to be within an allowable error range.  

State recovery allows a wirelessly networked control system to attain a higher level of 

performance compared to a purely decentralized system in which controllers do not 

communicate. 
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For example, the estimator at the ith degree-of-freedom makes an estimate based on 

the measured output of the system: 

{ }T
iii xx &=y  (6.15)

Using this measurement, an estimate for the full state is made using Equations 6.11 and 

(6.12).  The estimator then compares the estimate iy , to the measured system output, yi.  If 

the difference is greater than the established error bound, H:  

Transmit ix  if  dii Hxx >−  

Transmit ix&  if  vii Hxx >− &&  
(6.16)

After transmission, the updated state vector, *z , at each degree-of-freedom in the system 

becomes: 

{ }Tniiiniii xxxxxxxxxx &L&&&L&LL 111111
*

+−+−=z  (6.17)

The calculation of the control force is then ui = Gi
*z  where Gi ∈ R1x2n is the ith row of the 

global LQR gain matrix, G. 

The difference between the true state response and the updated state estimate can be 

expressed: 

ezz +=*  (6.18)

where  

{ }T
niinii eeeeeeee &L&&L&LL 111111 00 +−+−=e  (6.19)

Each term of the vector represents the error between the estimated and true state variable; 

however, if the estimate is updated by the state recovery algorithm, then the 

corresponding error is zero.  Through state recovery, the error inherent to the estimator is 
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bounded by the threshold vector, H.  Hence, the calculated control force vector for the 

global system, u, is: 

GeGzzGu +== *  (6.20)

In essence, the estimation error amplified by the feedback gain represents a bounded 

disturbance on the control force with the bound dictated by the thresholds, H, used 

(Yook, et al. 2002).   

 

6.3. Operating System Requirements for Wireless Control Applications 

For maximum flexibility, a multi-threaded operating system (OS) and application 

software were developed.  A fully functional physical (PHY) layer, controlling physical 

parameters of the radio (channel selection, unit and network identification, and 

modulation of data on the carrier frequency), and medium access control (MAC) layer, 

defining timing and access to wireless communications, were written to conform to the 

IEEE 802.15.4 wireless communication standard.  For structural control applications, the 

IEEE 802.15.4 MAC layer introduces excessive latency, requiring up to 16 ms per data 

transmission.  A simplified, though less adaptable, MAC layer is developed for this study 

using an unacknowledged TDMA communication scheme to keep data transmission 

times below 2 ms.  In total, the calculations of state vector estimates, determination of 

control forces, and the transmission of state data (when necessary) occurs within 33 ms.  

As will be shown, clock drift and jitter during the course of the test occasionally disrupt 

the TDMA scheme leading to randomly lost packets, most especially when demand for 

the available bandwidth is high.  Finally, taking advantage of the multi-threaded OS, the 
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desired control force can be calculated as the unit is in communication with the wireless 

sensor network.  The timing of a typical control step is presented in Figure 6.2. 

 

6.4. Verification of the Control Strategy 

The structure (Figure 6.3) that is the subject of both the simulation and experimental 

phases of this study is a partial scale, single-bay, six-story building.  The floor height is 

1.0 m per story and the bays are 1.0 m wide by 1.5 m deep.  The columns are 15 cm x 2.5 

cm rectangular steel sections oriented in their flexurally weak direction.  Steel floor plates 

are 2 cm thick and are supported on four sides by 0.5 cm thick L-section beams with 

equal 5 cm legs.  The floor plates are connected to the beams by means of welded 

connections while the beams are connected to the columns via bolted connections.  Wide 

flange H100x100x6x8 steel section V-braces are provided as the connection points for 

the MR dampers (Figure 6.4) installed on every floor of the structure. The damping 

coefficient of the MR dampers varies with input current.  As the current changes, the 

 
Figure 6.2. Typical wireless sensor operation during each time step of the discrete-

time control system. 
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resulting magnetic field aligns ferrous particles suspended in a viscous fluid within the 

damper.  A stronger magnetic field results in stronger particle alignment yielding higher 

damping ratios.  The hysteretic, bi-linear, bi-viscous MR damper model in this study was 

developed by Lin, et al. (2005).  The MR damper employed (Lord Corp. RD-1005-3) 

saturates at ±2.0 kN, has a 20 mm stroke, an input range of 0 to 2 A, and is powered by 

an independent 24 V power supply.   

Each actuator has an associated Narada wireless sensor; the wireless sensor measures 

the lateral response of the structure using Tokyo Sokushin VSE-15D velocity meters.  

The VSE-15 has a sensitivity constant of 10 V/(m/s) and voltage output between ±10 V.  

Its maximum measurable velocity is 1 m/s within a 0.1 to 70 Hz frequency band.  A 

signal conditioning circuit shifts the mean from 0 V to 2.5 V and de-amplifies the 

sensitivity by a factor of 4 such that the velocity meters output is within the input range 

(0-5 V) of the wireless sensor’s ADC.  An additional wireless sensor is located on the 

table to measure and broadcast the reference (ground) motion to the network.  Wireless 

sensors are used to calculate control forces and to command the MR dampers with 

voltage outputs ranging from 0 to 0.8 V.  The aforementioned bi-linear, bi-viscous model 

is used to convert the desired control force into an appropriate command voltage (Lynch, 

et al. 2008).  Desired control forces, with few and minor exceptions, are in the direction 

opposing motion.  For any desired control force not opposing motion (which the MR 

damper cannot supply) the voltage output is set to 0 V (corresponding to minimum 

damping).  The command voltage output by the sensor is converted by the damper power 

supply into a proportional amperage that falls within the operating range of the MR 
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 (a) (b) 

Figure 6.3. Test structure for the validation of the wireless control system: (a) 
structure mounted to the shake table; (b) instrumentation strategy. 

 

 
Figure 6.4. MR damper (Courtesy of K.-C. Lu). 
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damper.  Transmissions of state data occur only when the estimated state errors exceed 

the preset threshold. 

The command to begin testing is sent from a personal computer (PC) via a Chipcon 

CC2420DBK development board connected through the PC’s serial port.  No further 

communication with the PC occurs until the test is over, at which time the wireless 

sensors transmit data back to the PC for offline analysis.  The velocity response of the 

structure (relative to base), estimated velocity, and desired control force values recorded 

by the wireless sensors are reported back to the PC.  Redundant cable based sensors 

record the displacement (Temposonics II position sensors) and velocity (Tokyo Sokushin 

VSE-15-AM) of the structure.  Refer to Figure 6.3(b) for a full schematic of the structure 

with the wireless and wired data acquisition systems detailed.  The configuration of the 

MR dampers, unfortunately, do not allow for the use of load-cells at the present time. 

 

6.4.1. Control Performance Evaluation 

As the state recovery error threshold is varied, control performance changes.  Eight 

cost functions, J1 through J8, are used to characterize the controller performance as a 

function of error threshold.  The first six cost functions, adapted from Ohtori, et al. 

(2004), characterize the ability of controllers to reduce seismic responses important to 

design: interstory drift, floor acceleration, and base shear all normalized to the 

uncontrolled structural response due to the same ground excitation signal.  Interstory drift 

minimization is important to reduce the likelihood of damage to the building system, 

especially to non-structural elements such as windows, doors, and partitions.  Floor 

acceleration is related to the force exerted on the structure and its occupants during a 
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seismic event.  Base shear is an important design parameter in sizing columns and 

footings.  A pair of cost functions measures each of these parameters; one cost function 

compares single point absolute maximum values, while another compares the vector 

norm response over the entire test period. 
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where W∈ Rnx1 is the seismic mass vector.  Finally, 
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J7 characterizes the average strain and kinetic energies in the system during the 

earthquake.  Clearly, J7 should be minimized to reduce the undesirable response energy 

of the system due to seismic excitation: 
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The wireless bandwidth utilized by the wireless control system is characterized in J8, 

which is the total number of data transmissions during the time of the ground motion 
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divided by the total possible number of transmissions per sensor (N) times the total 

number of sensors (n). 

nN
SentonsTransmissiDataJ

×
=

)(#
8

 (6.28)

For centralized control, J8 would be 1 while for fully-decentralized control, J8 would be 

0; a number between 0 and 1 is an indirect measurement of where the partially 

decentralized control system falls on the spectrum between centralized and decentralized.  

These cost functions form the basis for comparing simulation and experimental results 

over a range of error threshold levels. 

 

6.4.2. Simulation 

To demonstrate the proposed control method, a numerical simulation is preformed in 

MATLAB using a model based on the six-story test structure.  Specifically, the structure 

is modeled as a lumped-mass building with the mass of each floor equal to 862.85 kg.  

The identified stiffness for all stories is approximately 1.24 MN/m.  The structure is 

lightly damped and is modeled using 0.5% Rayleigh damping.  Wireless sensing units, 

assumed to be on each floor, record velocity measurements from collocated velocity 

meters while a seventh unit measures and broadcasts ground velocity to the network.  

Sensor noise is added to the signal in the form of Gaussian white noise with a standard 

deviation of 0.5 mm/s.  The units compute the estimation error of the locally measured 

state data and compare it to the error threshold, retaining the estimate in cases where the 

error is below the threshold, otherwise replacing it with the measured value and 

transmitting that measured value to the rest of the network in cases where the error 

exceeds the threshold.  Both perfect and lossy communications are simulated.  For lossy 
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communication, the chance of a dropped packet is modeled by use of a zero-mean, 

Gaussian random variable with unity standard deviation.  A packet is considered to be 

“dropped” whenever the magnitude of the random variable exceeds an experimentally 

derived threshold.  The magnitude of the random variable is multiplied by the number of 

neighboring units that choose to utilize the broadcast medium at the current step hence, 

the probability of a dropped packet increases when nearby units transmit and is zero 

when none of the neighboring units transmit. 

Finally, the units calculate and apply the LQR control force and update the state 

estimate for the next time step.  In the simulation, idealized skyhook actuators are 

assumed.  To keep desired control forces below the limits of realistic semi-active 

actuators (e.g., MR dampers), the following values of CLQR and Q2 are selected in the 

LQR formulation (Equation 6.6). 
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The numerical simulation performs average Newmark integration of Equation 6.1.  

The model is subjected to two different earthquake ground acceleration records: El 

Centro 1940 NS (USGS Station 117), Chi-Chi 1999 NS (TCU Station 076).  The records 

are normalized to obtain absolute maximum accelerations of 1.0 m/s2 (100 gals).  The 

simulation is repeated with the error threshold of the state recovery algorithm altered.  

The velocity state values are compared at each degree of freedom with 25 error 

thresholds (that are logarithmically equally spaced between 0 m/s and 5 m/s) applied in 

successive runs.  Clearly, the 0 m/s threshold effectively triggers communications at each 
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step resembling a centralized control system.  Likewise, the 5 m/s threshold is so large 

that the threshold is never exceeded leading to a decentralized control system. 

The ability of the controllers to reduce the seismic response of the structure changes as 

the error threshold varies.    Maximum interstory drift as a function of floor is presented 

for a relevant set of error thresholds in Figure 6.5 for the El Centro record (assuming 

perfect communication).  In the simulation, the peak drift per floor increases 

monotonically with error threshold.  The control performance, measured by error 

thresholds J1 through J8, as a function of error threshold is presented in Figure 6.6 for 

both the perfect and lossy communication cases (El Centro and Chi-Chi).  In the perfect 

communication case, performance generally transitions smoothly from centralized to 

fully-decentralized control results as error threshold increases; the transition is 

 
Figure 6.5. El Centro (100 gals) simulation results: peak interstory drift by floor. 
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characterized by a sigmoidal shaped function, as expected for J1 through J7.  However, in 

the case of lossy transmission, as bandwidth utilization decreases (as seen by J8), the 

control performance generally improves slightly since fewer data packets are lost to 

collisions common in a centralized control system.  This effect causes the error functions 

to actually go down as error threshold is initially increased.  Eventually however, the 

error threshold becomes so large that the overall control performance degrades due to 

estimation error and performance begins to approach that of the fully-decentralized case.  

In that case, the error threshold function rises with cost function values identical to the 

perfect communication case.  These plots suggest an optimal error threshold level for 

performance in the case of lossy communications where enough data is transmitted to 

 
 (a) (b) 

Figure 6.6. Simulation results: (a) El Centro (100 gals) cost functions; (b) Chi-Chi 
(100 gals) cost functions. 
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improve performance, but not too much to cause excessive packet collisions.  For El 

Centro, this optimal error threshold is at 10 mm/s, while for the Chi-Chi earthquake, it is 

from 1 to 10 mm/s. 

 

6.4.3. Experimental Results 

Uniaxial lateral excitation is applied to the test structure by the shaking table 

corresponding to the ground motion record for El Cento and Chi-Chi normalized to 1.0 

m/s2 (100 gals) peak acceleration.  Narada wireless sensing units operate autonomously 

to run the control network once the test has begun and interact with a PC server only at 

the end of a test to report data.  The measurement performance of the Narada wireless 

sensor is presented in Figure 6.7 with the wirelessly measured velocity comparing well to 

that of the wired system.  In one day of testing, a ground motion record is repeated over 

an approximately logarithmically distributed error threshold domain. As shown in Table 

6.1, in total, 17 independent tests are conducted with increasing error thresholds.  The 0 

m/s threshold corresponds to a centralized case because at each time step, the threshold is 

exceeded forcing every sensor to communicate.  Tests 2 through 16 increase the error 

threshold so as to render the system increasingly more decentralized.  Test 17 is 

completely decentralized since the error threshold is so high, it is never exceeded. 

Figure 6.8 depicts the experimentally derived maximum drift response by floor for the 

El Centro record.  Evident in the peak drift plots is the effectiveness of the wireless 

control system.  The greatest peak drifts are witnessed for the structure without dampers 

installed.  With the MR dampers installed but placed in a passive state (minimum and 

maximum damping settings), reduction in the interstory drifts are observed.  However, 
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the best performance occurs when the dampers are operated by the wireless control 

system.  In general, as the error threshold is lowered, the redundant estimator framework 

yields better performance with respect to the peak interstory drift profile of the structure.  

This fact is more apparent when considering the cost functions J1-J8 that are presented in 

Figure 6.9 for both the El Centro and Chi-Chi earthquake records (the El Centro results 

are an average of the two days of testing).  The experimental results observed for both 

ground motion records are consistent with those obtained in simulation (Figure 6.6).  It 

 
Figure 6.7. Narada measured velocity output of the test structure excited by El Centro 

(100 gals) with cabled system response overlaid for comparison. 

 

Table 6.1. State recovery error thresholds experimentally tested. 

Test # Velocity Error Test # Velocity Error 
1 0 m/s (Centralized) 10 0.008 m/s 
2 0.00002 m/s 11 0.02 m/s 
3 0.00005 m/s 12 0.05 m/s 
4 0.00008 m/s 13 0.08 m/s 
5 0.0002 m/s 14 0.2 m/s 
6 0.0005 m/s 15 0.5 m/s 
7 0.0008 m/s 16 0.8 m/s 
8 0.002 m/s 17 5 m/s (Decentralized) 
9 0.005 m/s   
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should be noted that, due to time constraints during testing, J8 was not logged for the Chi-

Chi record.  The majority of the cost functions initially decline as the error threshold is 

raised suggesting that the system performance improves initially because partial 

decentralization results in less data loss in the wireless channel (despite the TDMA 

communications).  While initial gains are derived by alleviating the demand for the 

wireless channel, such gains are eroded as the error threshold is raised further due to 

decentralization of the control system.  As a result, the cost functions begin to increase 

until is plateaus at large threshold values (essentially, when it is decentralized).  This 

result lends further credence to the view advanced in the simulation phase that there 

exists an optimum error threshold level for control performance.  For both earthquake 

records, it is likely that the optimal threshold is from 1 to 10 mm/s. 

 

 
Figure 6.8. El Centro (100 gals) experimental results: peak interstory drift by floor. 
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6.5. Conclusions 

Transmission of every raw data point within a wireless control system increases 

delay, degrading the control performance, and drastically reducing battery life of the 

wireless sensors.  Strategic use of wireless bandwidth can help to overcome some of the 

limitations of wireless control.  An embedded estimator with embedded control force 

computation can be used for control in an actuator network whose size makes centralized 

control impractical due to bandwidth limitations.  Limitations on the performance of 

fully-distributed control make some sharing of data between units attractive.  By sharing 

the most critical measured data points, those most different from their corresponding 

estimated data points, limited bandwidth can be utilized in an efficient manner.  

 
 (a) (b) 

Figure 6.9. Experimental results: (a) El Centro (100 gals) cost functions; (b) Chi-Chi 
(100 gals) cost functions. 
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Furthermore, the performance of the controller varies from that of centralized control to 

that of distributed control as the error threshold is varied from low to high.  Even for 

conservative communication models (e.g., TDMA) however, there appears to be data loss 

resulting in a decline in performance for excessively low error threshold levels 

(suggesting an optimal threshold level between centralized and fully-decentralized 

control).  This effect may become more pronounced under less conservative 

communications models (e.g., CSMA-CA), a prospect that warrants further investigation.  

One might also wonder about the efficacy of the base unit responsible for relaying ground 

motion data to the rest of the network as this data is critical for proper operation at any 

level of centralization.  For this study, a larger time window is allocated to the base 

wireless sensor for communications, resulting in near perfect reception.  Additionally, as 

the height of controlled structures increase, the ability of the base unit to transmit to 

sensing and actuation nodes located on upper floors will be compromised.  Further work 

to address the effect is warranted.  Also, as the number of floors increase, the number of 

embedded floating-point math operations required to compute the estimation updates as 

well as the control forces increase.  Eventually, the latency introduced by these 

computations will introduce unacceptable losses in control performance making reduced 

order models more attractive. 

In this study, a so-called “optimal” threshold was determined experimentally, but an a 

priori means of establishing an error threshold would have more appeal.  To identify the 

optimal threshold, first characterization of the behavior of the wireless system is 

necessary (e.g., packet collisions, drop rates, range issues, etc.) along with an analytical 

model of the transmission success rate as a function of utilized bandwidth.  Second, an 
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analytical model of the system performance as error accumulates (with a realistic 

estimation of sensor noise and disturbances) is necessary so that an acceptable level of 

control performance that is achievable by the wireless system can be identified.  Further 

investigation is also warranted in control force derivation.  It is implicit in the LQR 

approach used in this study that the applied control force will be the exact desired control 

force to guarantee optimality.  Also, all models used in the LQR derivation assume 

linearity of the system.  These assumptions are often unrealistic for civil structures due to 

the large forces required and the complicated dynamics of semi-active actuators such as 

MR dampers.  Additional investigation is also warranted in error handling algorithms 

within the communications protocol derived for this study.  Additionally, an adaptive 

error threshold may yield better results than the static threshold and should be 

investigated.  Finally, organizing sensors into hierarchal clusters may reduce bandwidth 

usage, allow multi-channel utilization, and improve data flow in large control systems.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

7.1. Summary of Thesis 

The main focus of this thesis was to present a wireless framework for low-cost smart 

structure technology that goes beyond just simple monitoring activities and leverages 

collocated computing and actuation to make civil infrastructure safer and its management 

more economical.  This framework emphasized autonomous operation, embedded 

computing, and the reactive abilities of sensor-enabled structural systems.  This 

framework mandated the development and validation of a wireless sensing platform 

tailored to meet the particular challenges of sensing, embedded computing, and actuation 

in civil infrastructure environments.  More so however, this framework required a new 

way of looking at engineering algorithms (e.g., monitoring, algorithms for structural 

health monitoring, and structural control) so that they can run effectively within a 

distributed sensor network, characterized by distributed memory, processing, and data 

resources, not to mention non-trivial costs associated with data transmission between 

nodes (namely, in terms of energy and quality-of-service realized by the network’s 
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wireless communication bandwidth).  Thus, this thesis emphasized sensor-level, local 

data processing to preserve both battery life and wireless communication bandwidth, as 

well as to eliminate the potential accumulation of unprocessed raw data that tends to exist 

in monitoring applications where data processing resources are limited.  This thesis also 

presented embedded computing frameworks for tasks necessary to the smart structure 

paradigm including monitoring, feature extraction (load estimation and structural health 

monitoring), and structural control. 

Chapter 2 introduced the wireless sensing platform, termed Narada, that facilitated 

the wireless smart structure framework of this thesis.  Chapter 2 began with a detailed 

discussion of both the advantages and challenges inherent within a wireless sensor 

network relative to a traditional cable-based system.  Following that, was a discussion of 

the hardware requirements necessary for wireless sensor design as well as a discussion of 

wireless sensors that were precursors to Narada from both academia and industry as well 

as contemporary wireless sensor nodes.  The Narada wireless senor was then introduced 

with descriptions of both its hardware and firmware (embedded software) features and a 

discussion of the design decisions that affected its effectiveness in civil infrastructure 

applications.  The Narada wireless sensor had a number of features that made it unique.  

These features included a high-resolution sensing interface, that made it well suited for 

monitoring of civil structures excited by low-level, ambient environmental loading, a 

low-power radio designed for use in scalable, ad-hoc personal area networks, and an 

actuation interface that allowed it to form and participate in active sensing and control 

networks.  Chapter 2 also presented a power-amplified transceiver interface for Narada, 
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followed by a discussion of data collection issues including network formation, data 

buffering, and synchronization. 

A validation study of the suitability of the Narada wireless sensing system for long-

term autonomous monitoring applications was presented in Chapter 3.  A novel hybrid 

wired/wireless sensing network was deployed as a hull monitoring system aboard the 

FSF-1 Sea Fighter, a unique, experimental littoral combat vessel commissioned by the 

U.S. Navy.  The Sea Fighter was composed of twin aluminum catamaran-style hulls, 

which made it an exotic design from the Navy’s point of view.  This fact lead to the 

vessel serving as an ideal test-bed for the wireless sensing system because an existing 

seakeeping hull monitoring system was available for comparison purposes (and the 

vessel’s crew was accustomed to accommodating research activities).  In this study, 20 

Narada wireless sensors were installed aboard Sea Fighter collecting hull response data 

from accelerometers and metal-foil strain gauges.  The hybrid wired/wireless network, 

consisting of three wireless subnets linked to the existing shipboard Ethernet local area 

network through wireless access points on its main working deck, was presented in detail.  

By using wireless technology, to economically consolidate sensor data from transducers 

that were spatially dispersed within the main ship compartment, and wired technology, to 

communicate large quantities of data through bulkheads, the relative strengths of each 

technology were leveraged while significantly mitigating the relative weaknesses of each.  

Reliability of the wireless hull monitoring system was discussed in detail and wirelessly 

collected data was used to characterize modal properties of the vessel. 

In Chapter 4, an embedded feature extraction algorithm was introduced for load 

estimation of wind turbine structures.  Load estimation of wind turbines continues to be 
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an open problem regardless of sensor type or network topology.  The wind load 

estimation method of Chapter 4 was designed for use with output-only wireless sensing 

data, relying on low-order input-output mathematical models (often associated with 

system identification and control applications) to extract loading information from the 

measured structural response of the turbine.  In this method, sensor data was used to 

update a model of the turbine tower which in turn was used to estimate the loading input 

from the tower response.  The method was described in detail and then demonstrated 

using a laboratory validation structure with known parameters and measurable input.  

Finally, a field instrumentation campaign measuring the response of operational turbines 

using Narada was presented with application of the method to data obtained from one of 

the operational turbine towers. 

With the ability of the online system to identify and extract relevant features from 

data established in Chapter 4, Chapter 5 presented a structural health monitoring 

framework for the Narada network based on the tracking of changes in identified system 

poles.  In this method, distributed computing resources were leveraged to process 

distributed data using primarily sensor-level computing.  Both input/output and output-

only approaches were presented.  In the input/output approach, the sensor node with 

access to input data broadcasted it for use by the entire network, but raw output data was 

not transmitted.  A recursive linear least-squares algorithm was used to identify a linear 

difference equation that described the system; from the linear difference equation, system 

poles were extracted.  In the output-only approach, sensors used purely locally measured 

output data in a recursive, pseudo-linear least-squares algorithm to find the denominator 

of the linear difference equation that yielded an estimate of the same system poles.  
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Statistically significant changes in pole locations were correlated to damage in both a pre-

stressed concrete box-girder bridge and six-story steel building frame application.  In 

both the input/output and output only approaches used, results from all sensors in the 

network were aggregated using weights derived from the observation grammian.  

Because the observation grammian is a measurement of energy at a sensor due to the 

effect of the vibrational modes of a structure, it provided physical insight into the 

differing levels of sensitivity to damage observed by different sensors from the identified 

poles.  Furthermore, it gave a rational basis for integrating the sensor-level results across 

the network.  By transmitting primarily results of the data processing algorithms between 

units (as opposed to raw data), the energy and communication bandwidth demands placed 

on the wireless network by the structural health monitoring algorithm were constrained. 

In Chapter 6, a similar balance between local processing and communication using 

the network’s wireless communication bandwidth was considered for wireless structural 

control.  A key aspect of the smart structure system proposed was its ability not only to 

sense external stimuli, but to react to them as well through feedback control.  Wireless 

networks introduce additional latency into feedback control systems that is both 

deterministic (e.g., delay due to computational overhead) and non-deterministic (e.g., 

transmission delays due to dropped packets).  Because increased use of the wireless 

communication channel tends to degrade the performance of units accessing that channel, 

a means for intelligently leveraging scarce communication bandwidth in wireless control 

systems that was adapted from network control (Yook, et al. 2002) was developed and 

presented in Chapter 6.  Here, wireless sensors responsible for sensing the response of the 

structure, calculating control forces, and commanding collocated, semi-active actuators 
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ran redundant state estimators.  Local estimation errors were tracked and large errors 

triggered communication of measured state data between sensing nodes.  In this way, 

only the most critical sensor data points were transmitted, reducing network dependency 

on the wireless communication network and preserving bandwidth. 

 

7.2. Contributions 

Despite many possible benefits, adoption of smart structure technology for 

management of civil infrastructure systems has still not occurred on a wide scale.  This 

thesis identified three key areas in which smart structure technology would be highly 

advantageous for protection of both the public and its infrastructure investments.  

Namely, this thesis identified deterioration, exposure to extreme loading events, and 

inadequate load characterization as problems within the civil engineering community that 

could be largely addressed by application of smart structure technologies.  Key barriers to 

the application of smart structure technologies in mitigating these problems are cost and 

perceived benefit.  This thesis presented wireless sensing systems characterized by 

sensors with collocated sensing, computing power, and actuation abilities as a means by 

which the benefits of smart structures (i.e., embedded capabilities within the structure to 

sense external stimuli, interrogate their own condition, and react in order to reduce the 

effects of undesirable events) might be realized at a significantly reduced cost versus 

traditional cable-based sensor networks. 

To accomplish this goal, a new wireless sensing platform was required, tailored to 

meet the needs of smart structure applications in the civil engineering realm.  The sensing 

system, termed Narada, was designed to be low-cost and to promote use in high-density 
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sensor networks.  It was designed to be low-power, to operate effectively on battery 

energy, to form scalable, adaptable networks of varying sizes, to be computationally 

capable, to be able to perform embedded distributed engineering algorithms, and 

equipped with actuation capabilities allowing it to command collocated actuators as well 

as respond autonomously to large loading events.  Meeting these design criteria, Narada 

represents a new paradigm in active sensors for civil infrastructure systems.  In addition, 

as a part of its development, the Narada wireless sensing system was extensively field 

tested as a structural monitoring system.  The hybrid wired/wireless hull monitoring 

system presented in Chapter 3 represents a novel approach to combine the cost benefits 

of wireless signal routing for spatially dispersed transducers, and the high-throughput 

rates of wired signal routing of the wirelessly aggregated data. 

Most interestingly, this thesis presented a framework for distributed, embedded data 

processing within wireless civil smart structure sensor networks.  Because computing 

resources and data are distributed throughout wireless sensor networks, novel data 

processing approaches are particularly valuable for the efficient execution of engineering 

algorithms.  While a wireless network is capable of sharing data between nodes, data 

transmission comes at the expense of power consumption (an important issue in battery 

powered wireless networks) and bandwidth utilization (which can impose limits on 

system scalability due to constraints on the wireless communication bandwidth available 

to wireless networks).  Data processing algorithms that rely primarily on local sensor-

level processing make the most sense in wireless sensor networks because they preserve 

power and bandwidth.  This thesis presented algorithms that fit this framework for three 

important smart structure applications, namely load estimation from measured dynamic 
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response, structural health monitoring, and structural control.  These algorithms relied 

predominantly on sensor-level computing and access to the wireless communication 

channel was restricted to transmission of only limited amounts of strategically selected 

data that provide maximum benefit to their associated algorithm.  These algorithms were 

then validated in laboratory studies as well as in field instrumentation campaigns. 

 

7.3. Future Work 

This thesis presented a framework for wireless civil smart structures that relied on 

embedded, sensor-level data processing, a sensor platform capable of realizing that 

framework, and application algorithms for design load estimation, structural health 

monitoring, and structural control that fit within that framework.  While these results 

represent a significant step forward, future research efforts along these lines are still 

warranted.  More recent advances in low-power commercial electronics now provide 

significantly greater memory and computational power within individual wireless devices 

for relatively modest increases in power consumption and cost.  Properly implemented, 

these advances have the potential to increase the computational burden that may be 

assumed by individual sensors within a network and the speed at which engineering 

algorithms can be executed.  A new generation of the Narada wireless sensing platform, 

built on the latest digital signal processor (DSP) technology, will allow embedded system 

identification algorithms (that are at the heart of both the load estimation and structural 

health monitoring methods) to operate faster, larger models to be used, and larger data 

sets to be processed.  With significantly greater speeds for floating-point matrix math 

operations involving floating-point numbers, new DSP technology will also allow for 
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significant improvements in the speed at which wireless control operations can be run 

(the speed of these algorithms directly affects their effectiveness) and will serve to 

increase the desirability of embedded sensor-level computation as the latency due to 

embedded math operations decreases and the latency due to communication remains 

fixed. 

Besides simply leveraging new technology to improve the capabilities of the wireless 

platform, future work is warranted to improve the specific algorithms also presented as 

part of this thesis.  Model based load estimation for wind turbines is a relatively new area 

of investigation and provides many additional opportunities for improvement.  The 

method presented in this thesis for load estimation of wind turbine towers could be 

extended.  In future studies, arranging access to the turbine blades will be very important.  

With the ability to place sensors concurrently within the turbine blades and the tower, the 

interplay between the turbine blades and the tower could be characterized.  Vibrational 

measurements of points within the turbine blades could be used to identify blade models 

that, combined with the tower model, could separate the influence of vibrational modes 

of the blades from the wind loading itself and improve the estimate of the wind load 

itself.  Also, additional sensing modalities could be of great value to enhance the estimate 

of the loading derived from the vibrational response of the turbine.  Measurements of air 

velocity at the tower, though disturbed by the blades, could provide additional insight 

into the loading environment when coupled with a sufficiently sophisticated model of the 

wind/structure interactions. 

In the area of structural health monitoring, characterization of the structural 

parameters with respect to environmental changes is necessary before wide spread 
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adoption is practical.  To accomplish this goal, additional long-term field monitoring 

campaigns of operational structures will be necessary.  Wireless sensors will be 

instrumental in collecting and processing this data.  In addition, load estimation methods 

developed earlier in this thesis could prove valuable in identification of more accurate 

system models that form the basis of the structural health monitoring method.  Output-

only methods presented are effective in producing models that show demonstrable 

variation for the damage scenarios investigated however, more refined models should 

yield greater sensitivity to detectible damage modalities. 

Just as the fusion of load estimation and embedded structural health monitoring 

shows promise for improved performance, fusion of the online model identification 

methods developed for structural health monitoring could be used to improve structural 

control applications.  The method for leveraging bandwidth in a partially decentralized 

structural control framework is highly model dependent.  Modeling uncertainties or 

changes in structural or actuator parameters over time will affect the accuracy of the 

estimators, the degree of wireless communication bandwidth consumed, and ultimately, 

system performance.  An embedded adaptive control system would help to alleviate these 

concerns.  Adaptive control systems operate in two parts: a control law and a recursive 

model identification algorithm.  In high processor power applications, these steps can be 

implemented on the same device; and a constant update of the control law can be 

provided.  In resource constrained wireless networks, the recursive system identification 

process may be executed instead on a parallel wireless network programmed to compute 

and transmit control law updates only when certain conditions are met, for instance when 

significant discrepancies in structural properties are observed. 
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Finally, additional smart structure embedded computing frameworks for use in civil 

sensor networks (wired or wireless) could provide great benefit for management of civil 

infrastructure assets.  Data usage is a critical issue regardless of how data is transmitted 

within a network.  Resources for manual data processing (namely, qualified technicians 

and engineers) are in ever decreasing supply due to pressures to contain asset 

management costs.  Discrepancies between data collection capacities and data processing 

capacities lead to the inundation of raw data stored in centralized servers that may never 

be utilized.  Public monetary resources expended to collect data that goes unused either to 

provide for more efficient resource management or to enhance public safety are, for all 

practical purposes, wasted resources.  Autonomous data processing algorithms that are 

executed within microprocessors that are directly collocated with sensors eliminate this 

possibility.  These embedded computing tools can provide benefits in many area of civil 

infrastructure management including smart transportation networks (automotive or rail), 

monitoring of environmental pollutants, building environmental control systems, power 

distribution grids, drinking water supply networks, storm/waste water management 

systems, and even construction project administration. 
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