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Communicated by Russell Kreis
Blooms of the toxic cyanobacteria,Microcystis aeruginosa, have been both a public health and ecological concern
in Lake Erie for over a decade. Although models were previously developed to forecast cyanobacterial bloom
severity, the recent few years of bloom severity observations indicate the need to update these empiricalmodels.
The models that best estimate the bloom biomass use the Maumee River discharge or total bioavailable
phosphorus (TBP) loading from March through July. TBP is the sum of the dissolved reactive phosphorus and
the proportion of particulate phosphorus that is bioavailable, corrected for loss due to settling in the river. In
years when average June water temperatures were too low for Microcystis growth (b17 °C), the July loads
were excluded. As total phosphorus (TP) load includes much phosphorus that is not bioavailable (or reaches
the lake), the load of TBP was considered, and it provided a model that better explained the blooms than the
TP load. Residual discrepancies between predicted and observed blooms may involve factors such as the timing
of the majority of the spring loads (e.g., most in March or most in June or July) and potential influence from an
extremely large bloom in the previous year. The most extreme loads, such as seen in 2015, may cause different
responses than more moderate loads. The models estimate bloom size in most scenarios observed and can
serve as the foundation for setting nutrient reduction targets to decrease the occurrence of blooms in western
Lake Erie.

© 2016 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
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Introduction

For over a decade, western Lake Erie has experienced the recurrence
of dense blooms of cyanobacteria, or blue-green algae. These harmful
“algal” blooms (HABs) have consisted primarily of Microcystis
aeruginosa (henceforth referred to as Microcystis), an organism that
produces the toxin microcystin, but they have also included other
potential toxin producers such as Dolichospernum spp. and Planktothrix
agardhii (the latter more common in bays off the main lake). Lake Erie
experienced severe cyanobacteria blooms in the 1960s and 1970s. In
the 1980s and 1990s, the lake appeared to be bloom free, except for
blooms reported in 1995 and 1998 (Budd et al., 2001; Kane et al.,
2014). Starting in 2003, HABs became an annual occurrence, although
the severity varied widely between years (Bridgeman et al., 2013;
Stumpf et al., 2012). Recently, the occurrence of HABs has culminated
in several exceptional years: 2011, 2013, 2014, and 2015. The 2011
bloom may have been the most extensive ever to occur in Lake Erie to
that time, ultimately covering over 5000 km2 of the lake and impacting
both the American and Canadian coasts (Michalak et al., 2013; Stumpf
f).

f International Association for Great L
et al., 2012). The 2011 bloom had a widespread influence impacting
fishing, tourism, and public water suppliers. In 2013 and 2014,
potentially hazardous concentrations (N1 μg L−1) of microcystin were
detected in finished drinkingwater of communities adjacent towestern
Lake Erie. In 2013, Carroll Township issued a “do-not-use” advisory to
its 2000 municipal water supply customers, and in 2014, the city of
Toledo had the same problem, resulting in a “do-not-drink” notice for
3 days to about a half-million people. The 2015 bloom was estimated
to be even more severe than 2011 (NOAA, 2015).

In order to reduce the impacts caused by western Lake Erie HABs,
several strategies have been employed to address management issues
at different time scales. In the short term, biweekly forecast bulletins
are produced that show the location and intensity of the bloom over
the next few days (Wynne et al., 2013a). These bulletins provide infor-
mation that can support immediate action for drinkingwater treatment.
They also help activities such as boating, fishing, and other tourism that
canmove based on bloom location. In the mid-term, a seasonal forecast
of the bloom severity allows public water suppliers and agencies con-
cerned with toxin monitoring to plan for the bloom season, and for
local businesses to anticipate possible effects on the summer tourism
economy (Stumpf et al., 2012). In the long term, being able to forecast
HAB intensity on an annual basis helps identify themanagement actions
akes Research.
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that could reduce or eliminate the blooms in the future (Ohio EPA, 2013;
Scavia et al., 2016-in this issue), which is the emphasis of thismanuscript.

Short-term forecasts of the blooms have been in place since 2009
through the Lake Erie Experimental Harmful Algal Bloom Forecast
System (Wynne et al., 2010, 2013a), which is produced and distributed
by the U.S. National Oceanic and Atmospheric Administration (NOAA,
2015). This forecast includes determination of bloom location and
intensity from satellite and the use of a circulation model to predict
the location several days into the future. As of September 2015, the
bulletin was issued as the key part of the forecast and had over 1500
subscribers.

Seasonal forecasts were developed out of an examination of the
factors that should drive the blooms. Stumpf et al. (2012) showed that
the spring (March to June) discharge from the Maumee River (Fig. 1),
as well as total phosphorus (TP) or dissolved reactive phosphorus
(DRP) loads, explained the interannual variability in blooms since
2002. Using the same data, but a different statistical approach,
Obenour et al. (2014) also concluded that spring TP load explained the
bloom severity although they also proposed that there was a trend
toward increasing bloom magnitude over time. The Stumpf et al.
(2012) model was used to predict blooms in 2012 and 2013 up to
2 months in advance of the peak concentration (NOAA, 2012, 2013).
In the last 2 years, the annual forecast drew on an ensemble of models,
including Obenour et al. (2014) and the deterministic model of
Verhamme et al. (2016-in this issue) (NOAA, 2014, 2015).

For the long term, modeling the bloom severity can support
determination of targets for nutrient loads that can reduce the bloom.
The1972,Great LakesWaterQualityAgreement (GLWQA) set annual tar-
get loads for TP at 11,000metric tons in order to reduce the bloomsoccur-
ring at that time. The recurrence of blooms has shown that these targets
are outdated, in part because this targetwasfirstmet in 1981 and also be-
cause it has rarely been exceeded even in the recent bloom years (Ohio
EPA, 2013). The most recent GLWQA (2012) calls for a rigorous update
to the targets for phosphorus reductions in order to reduce the incidence
of extreme HABs in the western basin (Ohio EPA, 2013; GLWQA, 2012).
Phosphorus-basedmodels are critical to determining targets for phospho-
rus reduction. Climatologicalmodels, such as Stumpf et al. (2012) provide
a key component of amulti-model strategy to increasemanagement con-
fidence in the robustness of phosphorus reduction scenarios (Scavia et al.,
2016-in this issue).

In considering models linking phosphorus loads to HAB severity, an
additional consideration is the relative importance of various forms of
Fig. 1.Western Lak
phosphorus delivery, given that particulate phosphorus and dissolved
phosphorus can have drastically differing bioavailability (Baker et al.,
2014a). In the Maumee River, about 26% of the total particulate
phosphorus (TPP) is chemically bioavailable, whereas nearly 100% of
the dissolved phosphorus is bioavailable (Baker et al., 2014a). In the
1970s, when most phosphorus came from point sources like sewage
treatment plants, most TP discharged into the lake was bioavailable.
Following reductions in point sources of phosphorus (P) and changes
in agricultural practices, nonpoint sources from agricultural land now
dominate TP loads to Lake Erie. For the Maumee River, TP consists of
73% particulate P—mostly bound to suspended sediments—and 27%
DRP (Baker et al., 2014a). Furthermore, some 70% of TPP is spatially
unavailable, as it settles out of the water over the 42 km transit from
the nutrient sampling station (and water gauge) at Waterville, Ohio,
to the mouth of the Maumee River in Lake Erie (Baker et al., 2014b).
Hence, less than half of the TP measured in the Maumee River is
immediately available to phytoplankton in the lake.

The original models in Stumpf et al. (2012) were developed from
10 years of satellite data (2002−2011). Since 2011, there have been
3 years with severe blooms (2013, 2014, and 2015) and 1 year with a
small bloom (2012), providing important new data. In addition,
Obenour et al. (2014) concluded that the blooms may have become
more sensitive to phosphorus loads than earlier in this century. Also,
the work of Baker et al. (2014a, 2014b) indicated the potential impor-
tance of differing forms of bioavailable phosphorus. The combination
of these factors led to the realization that the relationships between
HAB intensity, and the driving factors of phosphorus loading and river
discharge should be reexamined in order to reevaluate the original
loading models (Stumpf et al., 2012). This paper examines the models
for estimating bloom severity using data from 2002 to 2015 along
withmeasures of bioavailable phosphorus in order to identify improve-
ments in forecasting bloom severity and evaluating the impact of
phosphorus loads for management strategies.

Methods

Biomass estimation

Bloom biomass was determined using data from the Medium
Resolution Imaging Spectrometer (MERIS) for 2002–2011. After
MERIS's satellite failed in April 2012, the Moderate Resolution Imaging
Spectroradiometer (MODIS) was employed for 2012–2015. Both
e Erie location.



Fig. 2. Time series of the total biomass measured as CI based on the 10-day composites. Eleven periods cover each year, starting July 11 and ending October 31. Threshold at CI = 0.5 for
readability (note the log scale).
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satellite data sets were processed using a spectral curvature method to
obtain the cyanobacterial chlorophyll-related index (CI) as described by
Wynne et al. (2013b), who also showed that a simple multiplier to the
MODIS curvature allows the MODIS and MERIS data to be directly
matched. The CI calculations used radiance-based reflectance, which
formally has units of sr−1. Several MODIS bands tend to saturate over
“scum” areas (areas with dense accumulations on the water's surface),
requiring a switch to an infrared algorithm that is tuned to match the
CI in the overlap in blooms in non-saturated areas (Wynne and
Stumpf (2015). Both MODIS and reduced resolution MERIS data have
a nadir pixel view of about 1 km andwere mapped to a common Albers
equal area projection with nearest neighbor interpolation. The CI
corresponds toMicrocystis biomass,with CI of 0.001 sr−1 corresponding
to 105 cellsmL−1 (Wynne et al., 2010; Lunetta et al., 2015). If the surface
concentration is assumed to be onemeter deep (themaximumdepth of
detection), then an accumulated CI of 1.0 units corresponds to 1020 cells
(Stumpf et al., 2012).

Composite images of the maximum CI value at each map pixel
were obtained from the individual scenes within sequential (non-
overlapping) 10-day periods (Wynne and Stumpf, 2015). The maxi-
mum was used for these 10-day composites for two purposes. First, the
integration removes most clouds over the period. Second, the satellite
observes only the surface concentration, nominally within a meter of
the surface, as noted above. AsMicrocystisblooms tend tofloat to the sur-
face during calm weather, accumulating the biomass at the surface,
choosing the maximum CI gives the best estimate of the areal biomass
Fig. 3. Bloom pattern at peak biomass for each year. Green (in center of scale bar c
during the 10-day period. Ten days are a reasonable compromise
between frequency of recovery and temporal resolution (Stumpf et al.,
2012). All the pixels for the western basin were then summed to obtain
the total biomass in CI units for each 10-day period (Fig. 2; values given
in Electronic Supplementary Material (ESM) Table S1).

Stumpf et al. (2012) used the average of three highest consecutive
10-day periods to define the annual bloom magnitude (that will be
called CI-avg). This average gave an estimate of severity over the
worst “month.” However, if any of the three 10-day periods suffered
from a lack of usable days due to cloud cover, that 10-day composite
may underestimate the areal biomass, particularly if only one usable
day occurred and it was concurrent with strong winds. This could pro-
duce a low bias (underestimate) of the average areal biomass occurring
over the 30 days. An alternative approach is to use the 10-day period
with themaximum biomass to capture the best estimate of the amount
of actual cyanobacterial biomass for comparison with the seasonal
phosphorus load. The peak in biomass also typically occurs in August
or September, after the seasonal load (Stumpf et al., 2012). Accordingly,
to address the total biomass, this study uses the maximum single
10-day period (CI-max) (Figs. 2 and 3). Yet it is important to note
that theCI-avg. and CI-max are closelymatched,with a linear regression
r2 of 0.92 and amean absolute percentage difference (MAPE) of 15% and
CI-max = 1.68 × CI-avg.

The accumulated CI has some uncertainty, especially in how pixels
next to the shore are evaluated (either excluded or included), as these
pixels can have either dense blooms or erroneously high values. As a
orresponds to threshold of hazardous bloom (CI = 0.001, Stumpf et al., 2012).
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result, the minimum uncertainty is about 0.5 CI units (i.e., negligible
separation between 2005 and 2007), with an additional uncertainty of
10% of the total CI for MERIS and about 25% for MODIS. MODIS is a
noisier sensor and requires more processing and adjustment to correct
for saturation and faulty nearshore values.

Nutrient loads and discharge

Stumpf et al. (2012) found that bloom severity could be explained by
models using monthly discharge and phosphorus loads (total phospho-
rus and dissolved reactive phosphorus) for the Maumee River (Stumpf
et al., 2012; Kane et al., 2014). The Maumee River is the largest tributary
in the Great Lakes basin. While the Maumee has 1/35th the flow of the
Detroit River, which carries water from Lake Huron and the upper
Great Lakes (Wynne and Stumpf, 2015), the Maumee's large concentra-
tion of phosphorus means that the two rivers supply an equal amount
of the phosphorus load into Lake Erie (Dolan and Chapra, 2012; Scavia
et al., 2014). The other tributaries into the western basin are negligible,
with b1/10th the loads of the Maumee.

Phosphorus loads were obtained using data from the Heidelberg
Tributary Loading Program (HTLP) operated by the Heidelberg
University's National Center for Water Quality Research (NCWQR)
(Richards et al., 2009). Water samples were collected for suspended
sediment and nutrient analysis at the USGS gaging station (04193500)
on the Maumee River at Waterville, OH, 42 km upstream from the
lake. Three samples per day were collected using a refrigerated ISCO
autosampler. During periods of high flow or high turbidity, all samples
were analyzed; at other times only one sample per day is analyzed. Typ-
ically, this program provides 450 to 500 analyzed samples per year
(Heidelberg, 2015). Discharge was determined from the USGS data.
Monthly loads were calculated as the sum of daily loads (Richards
et al., 2009). Any dayswithmissingflowweightedmean concentrations
(b5% of the time) were interpolated from previous days.

Bioavailable phosphorus was determined from TP, DRP, and the
coefficients of Baker et al. (2014a). Baker et al. (2014a) found that
the unreactive phosphorus is a negligible component of the dissolved
phosphorus. Therefore, total particulate phosphorus (TPP) was deter-
mined as the difference between TP and DRP (TP − DRP) following
Baker et al. (2014a). Total bioavailable particulate phosphorus (TBPP)
was then calculated from the Waterville TPP as

TBPP ¼ β� TPP ð1Þ

where β is the proportion of the TPP that is bioavailable (0.26), with the
value for β obtained from Baker et al. (2014a). As particulate phospho-
rus is lost by settling betweenWaterville andMaumee Bay, the residual
(TBPPresid) that reaches the lake was determined by

TBPPresid ¼ 1–Sð Þ � TBPP ð2Þ

where S is the settling term, or the proportion of TPP that settled out of
the water. Baker et al. (2014b) showed that approximately 70% of the
TPP settled out following a storm event in late August 2007. The total
bioavailable phosphorus entering Lake Erie from the Maumee River is
then the sum of the DRP and TBPPresid:

TBP ¼ DRPþ TBPPresid ð3Þ

To better understand the influence of the bioavailable term (β) and
the settling term (S), the sensitivity of the TBP was examined. In these
sensitivity tests, β covered the range from 0. 2 to 0.3 (Baker et al.,
2014a) and S covering the range from no settling (S = 0) to complete
settling (S = 1.0). Loads and CI values are found in Tables S1 and S2.
Water temperature

Water temperaturewas determined usingMODIS thermal data from
2002 to 2014. Monthly averages were obtained from the Giovanni web
site (NASA, 2015) for the southern section of the western basin west of
82.741W (Marblehead) and south of 41.914 N (latitude of north end of
Pelee Island). The satellite collects data about 2:00 amand 2:00 pm local
time. The night and day data sets were obtained separately and com-
pared. While they capture variations caused by diurnal heating, the
two sets differed b1°C across the entire time period, no larger than
the uncertainties in the measurement.

Analysis methods

Following Stumpf et al. (2012), we examined the non-linear
relationships of CI-avg. and CI-max with accumulated monthly spring
discharge (Q) aswell as TP, DRP, and TBP loads. All of these relationships
between the loads or discharge and the bloom magnitude are approxi-
mately exponential; thus, log transforms were applied to the biomass
data (i.e., log10(CI) against TBP) to allow for parameterization using
standard least squares linear regression. The resulting models have
the following form:

CI ¼ B� 10 aXð Þ ð4Þ

where X is the input variable (discharge, TP, DRP, or TBP), and a and B
are parameters obtained from linear regression. For consistency in
comparing the plots, 70% variation in the slope is plotted, as this value
captured the inter-quartile range of misfit of observed to regression
values in the bestmodels.Mean absolute deviation (MAD) and standard
deviation (SD) were determined between themodeled and observed CI
in order to assess error and robustness of the models. These excluded
the two extreme load years: the lowest (2012) and the highest
(2015), both of which were anomalous in several ways, as discussed
in the Results and Discussion sections. The MAD provides a better metric
for non-normal distributions, e.g., ones with some large misfits (Gorard,
2005; Willmott and Matsuura, 2005), while the SD is a familiar metric.
Spearman rank correlation (rho) was applied to the bloom years (2003,
2004, 2008–2011, 2013–2015) to evaluate the effectiveness of themodels
in determining the relative size of the blooms. The sensitivity of TBP to
variations in the values of bioavailable (B) and settling (S) was also
considered.

Results

Stumpf et al. (2012) determined that total discharge from March
through June provided the best metric for estimating bloommagnitude
for 2002–2011. Likewise, the TP and DRP loads for March–June had the
best relationships with the CI (TBP was not examined in that paper nor
in Obenour et al., 2014). The CI-max showed weaker relationships for
March through June discharges and phosphorus loads when 2012 to
2015 data were included (Table 1, Fig. 4) because the 2012 and 2013
blooms were larger than expected compared to the other years. The
2014 bloom falls within the 2002–2011 data.

Becausewestern Lake Erie blooms establish in July (Bridgeman et al.,
2013) and peak in late August or early September (Wynne and Stumpf,
2015), we examined the relationships between CI-max and nutrient
loads from March through July to assess the influence of July in
explaining the recent blooms. July had relatively large TBP (and
discharge) in 2003, 2008, 2013, and 2015 (Fig. 5). By including the
July loads, the 2013 bloom was slightly better modeled (Fig. 4B);
however, the 2003 bloomwas not, and 2003 had a bloommuch smaller
than expected from either discharge or any phosphorus load (Fig. 4B).
The Discussion section will further consider variations in 2015. The
model error increases for all loads (Table 1). The 2008 bloom shows a
slight difference when including July loads.



Table 1
Mean absolute deviation (MAD) in CI units and Spearman's rho for the several models for each of the variables, load of Q (106 m3), TP, DRP, or TBP (metric tons).

MAD Spearman rho

Mar–Jun Mar–Jul Mar–Jul warm Mar–Jul wgt Mar–Jun Mar–Jul Mar–Jul warm Mar–Jul wgt

Q 1.8 2.4 2.3 2.0 0.75 0.62 0.87 0.93
TP 2.2 2.8 2.7 2.8 0.48 0.55 0.55 0.73
DRP 2.6 3.6 2.4 2.3 0.70 0.58 0.68 0.87
TBP 2.2 3.3 2.0 1.9 0.70 0.63 0.72 0.87
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As temperature is important for cyanobacterial growth, the western
basinwater temperatureswere examined to better understandwhy the
2003 bloom was small for the March to July TBP (Fig. 4B). In 2003 and
2008, June was much colder (17.7 °C in 2003; 16.7 °C in 2008) than in
the other years (all above 20 °C; Fig. 6). By contrast, 2013, which had
similar loads prior to July, had a mean temperature of 21.3 °C.
Cyanobacteria favor temperatures above 20 °C (Imai et al., 2009; Paerl
and Huisman, 2009), indicating growth would have been depressed
by cold temperatures in early summer during 2003 and 2008. Cold
temperatures may also represent a surrogate for a combination of
factors, like strong winds and cloudy weather that can also reduce
cyanobacterial growth. Under conditions associatedwith June tempera-
tures b20 °C, the growth ofMicrocystismay be delayed and cells are not
present to use the July loads. The relationship between CI-max (bloom
biomass) and TBP improved when including July only during warm
(June) summers (Fig. 4C, Table 1). The 2013 bloom was still smaller
than modeled, as was 2012, which had no significant load in July. In-
cluding August discharge or loads (not shown) did not improve the
models, possibly because of nutrient limitation (Chaffin et al., 2014).
More likely, August was not important because August loads were neg-
ligible in all years—except 2007 (Baker et al., 2014b) when the spring
loads and bloom were also minimal—also suggesting that the lack of
early season growth limits the use of the late season nutrients.

Because the bloom develops rapidly during July and August
(Bridgeman et al., 2013), the July phosphorus loads during normal
warm temperatures may have a larger influence on the bloom biomass
than the previous months (March through June) (Chaffin et al., 2011).
Fig. 4. Relationships between total bioavailable phosphorus (TBP, which includes settling corre
(A),March to July (B), andMarch to July, with July included only forwarm Junes (C), andwith th
is relationship with values shown in Table 2. Thin lines show ±70% of slope. The MAD and
regression line, excluding 2012 and 2015. Loads are given in metric tons.
Namely, some of the phosphorus provided to the lake from March to
June may be lost to the eukaryotic phytoplankton before the
cyanobacterial bloom starts. Indeed, by reducing the influence of
March through June loads by half and using the entire July load at nor-
mal temperature (Fig. 4D, Table 1), the model has the best fit with all
years, except for 2012 (and 2015, addressed in Discussion). This result
raises a question about the timing of bloom initiation. If July loads are
a factor, then the possibility exists that the loads only during June and
July would drive the blooms. Stumpf et al. (2012) observed that June
loads alone might explain most years except 2004 and 2011. The com-
bined load from June and July, however, does not provide a meaningful
pattern compared to the bloom biomass (Fig. 7), with similar results for
the other loads. Extremely low TBP loads for June and July (b20 metric
tons; hereafter m. tons) corresponded to smaller blooms, with no pat-
tern for the larger blooms. In fact, 2011, one of the two biggest blooms,
had one of the smaller loads in June and July.

The models applying the March through July loads, with the
exclusion of July in cold Junes, best described the observed biomass
(Fig. 4C, D). Table 2 gives the parameters (B and a) for Eq. (4) for the
equally weighted March to July and the March to July with reduced
weight for March to June.

Sensitivity

The results shown here were mostly insensitive to variations in the
bioavailable fraction (β) of phosphorus (Eq. (1); ESM Fig. S1) or in the
settling rate (Eq. (2); ESM Fig. S2). The range of the bioavailable fraction
ction of Eqs. (2)–(3)) and biomass (CI units where CI-max= 1020 cells) for March to June
e same parameters as (C) butwithMarch to June loadsweighted at½ of July (D). Dark line
the SD are the mean absolute deviation and standard deviation of observed against the



Fig. 5. July load (metric tons) of total bioavailable phosphorus.

Fig. 7. The lack of a relationship between the bloom severity (CI-max) and the combined
June and July TBP loads only in metric tons (without March to May loads).
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(β) of TBPP of 0.2 to 0.3 reported in Baker et al. (2014a) results in a var-
iation of 5% in TBP, which is negligible in themodel (ESM Fig. S1). Larger
variations in β are not warranted (Baker et al., 2014a). The settling rate
of suspended sediment and associated particulate phosphorus (be-
tween the sampling station at Waterville, OH and Lake Erie proper)
had only a slight impact on the error terms with the mean absolute dif-
ference (MAD) of 1.87 for S = 0.3, and a MAD of 1.67 for S = 0.5 and
S = 1.0. The largest differences in the models occurs with total settling
(MAD = 2.3). Complete settling or no settling are unrealistic and have
not been observed in this system (Baker et al., 2014b) The likely settling
residual is more realistically between 0.3 and 0.5, which contributes at
most a 10% change in TBP, which would lead to low uncertainty in the
models.

Discussion

The bloom size was best modeled using discharge and TBP loading
fromMarch through July,with July excludedonlywhen Junewater tem-
peratures were below the optimal temperature (20 °C) for Microcystis
growth (Imai et al., 2009; Paerl and Huisman, 2009). Discharge, Q,
continued to provide the best predictor of the annual bloom biomass.
While the uncertainty (MAD) with Q is slightly higher than for TBP, Q
is superior at determining the relative size of the blooms (Spearman
rho in Table 2). Discharge, of course, is not, by itself, useful for amanage-
ment strategy. Of the phosphorus metrics (Table 2), TBP explained the
bloom biomass well and better than a TP model, both as estimated
Fig. 6. Western basin average monthly water temperature for May, June, and July from
2002 to 2014.
and for relative size (Table 2). This result was expected; the bioavailable
phosphorus that reaches the lake is the ecologically relevant load, and
so provides the information critical for nutrientmanagement strategies.

Several significant questions arise from these results: (1)What is the
appropriatemodel for predicting annual bloom severity, and should the
original March to Junemodel used by Stumpf et al. (2012) and Obenour
et al. (2014) be replaced? (2) What is the appropriate choice of
phosphorus loading for target scenarios? (3) Do the results support a
trend over time that yields larger blooms relative to phosphorus load
as proposed by Obenour et al. (2014)? (4) Are there details we still do
not understand after the inclusion of 2012–2015 data? Our answers to
these questions follow below in numerical order.

Annual bloom severity

For assessing annual severity, the results indicate that amodel based
on TBP for March to June, which was the recommended model of
Stumpf et al. (2012), was insufficient with the additional data, because
it under predicts the blooms of 2012, 2013, and 2015 by not including
July loads. When including July, models using TBP loads best approxi-
mate the interannual variability in the bloom biomass, compared to TP
or DRP loads (Tables 1 and 2, and Fig. 8). Of particular note, TP loads
provided poorer discrimination between all of the blooms (CI N2)
compared to TBP (or DRP) loads, with consistently lower Spearman's
rho (e.g., 0.73 vs 0.87 for TBP for weighted March to July). Also, param-
eterization with least squares regression led to fits that were strongly
leveraged by 2005 (the smallest load used in the regression) and 2011
(the largest load used). Usingmodels constructedwith those 2 years ex-
cluded, the TP model changed drastically and completely over-
Table 2
Coefficients for the March to July unweighted and weighted models with CI-max (Figs. 4
and 8). “Unweighted” and “weighted” are March to July models with warm June. March
to June (for reference against Stumpf et al., 2012) and March to July without temperature
change are shown for completeness. Coefficients B and a are from Eq. (4): CI biomass =
B × 10(a X), where X is the total load of Q (106 m3), TP, DRP, or TBP (metric tons).

Unweighted Weighted Mar–Jun Mar–Jul

B a × 10−3 B a × 10−3 B a × 10−3 B a × 10−3

Q 0.11 0.503 0.081 1.05 0.27 0.401 0.23 0.392
TP 0.40 0.864 0.31 1.85 0.57 0.748 0.55 0.713
DRP 0.38 4.12 0.34 8.30 0.48 3.87 0.55 3.30
TBP 0.37 3.26 0.32 6.67 0.47 3.06 0.51 2.70



Fig. 8. Relationships between CI-max andMarch to July, with July included only forwarm Junes andMarch to June loads (inmetric tons)weighted at½ of July for (A) discharge (Q), (B) TP
loads, (C) DRP loads, and (D) TBP loads.
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predicted 2011, whereas DRP and TBP models still closely predicted
2011 (Table 3).

The nutrient load through July should be considered because
cyanobacterial growth typically starts in Lake Erie by the beginning of
July (Bridgeman et al., 2013), although it intensifies in August in most
years (Wynne and Stumpf, 2015). Cyanobacteria are available to take
advantage of the fresh supply of TBP. If cyanobacterial growth starts
later because of a cold early summer (e.g., in 2003), excluding the
loads for Julymay be an appropriate model component. This hypothesis
can be examined more specifically with deterministic models, such as
that of Verhamme et al. (2016-in this issue). The temperature exclusion
may become irrelevant in the future if climate change leads to consis-
tently warm Junes. In the new analysis, loads from March through July
had the best relationship with the total biomass, although 2015 would
be overestimated. Because thesemonths cover an ecologically appropri-
ate time period, subsequent forecast models should use March through
July for predicting the seasonal cyanobacterial bloom. Only 1 year, 2007,
had a large nutrient load in August and that year had one of the smallest
blooms, even in September (Figs. 2 and 3).
Most appropriate P fraction

Historically, the evaluation of phosphorus load impacts in aquatic
systems has focused on TP rather than on the bioavailable forms of
phosphorus because virtually all TP from point sources was bioavailable
(Baker et al., 2014a). By contrast, phosphorus draining nonpoint sources
Table 3
CI prediction of 2011, and percentage of predicted to observed 2011, for regression
parameterization excluding 2005 and 2011. Observed CI-max for 2011 was 29.1.

Model Mar–July unweighted (%) March–July weighted (%)

TP 105 (360%) 160 (550%)
DRP 23 (79%) 21 (72%)
TBP 27 (93%) 26 (91%)
tends to consist primarily of sediment-bound TPP, which is much less
bioavailable (Baker et al., 2014a). True bioavailability should include
only that phosphorus that is both chemically and spatially bioavailable.
Settling determines spatial bioavailability; most phosphorus bound to
suspended sediments does not reach the lake and is not available for
bloom development under any conditions. Because the mean spring
DRP load is 27% (range 15–38%) of the TP load at Waterville, the
Maumee River delivers nearly equal amounts of DRP and TPP to Lake
Erie; as a result, the TBPP load is less than the DRP load. Varying the
proportion of TPP that settled during delivery (S) should produce only
slight variations in the amount of TBP (ESM Fig. S2), as DRP load compo-
nent of TBP is greater than the TBPP component.

Increasing sensitivity to P loads?

Obenour et al. (2014) concluded that the HABs appear to be more
sensitive to recent loads compared to the past decade; the results here
do not support this conclusion. Even though themodelswould underes-
timate the 2012 bloom, and the 2013 bloom would be underestimated
in some models, the 2014 bloom was indistinguishable from the other
past blooms, and 2015 bloomwould be overestimated by most models.
At this time, evidence does not support the hypothesis of increasing
sensitivity over time of the bloom growth to phosphorus loads.

An additional consideration on trends is the temporal pattern in dis-
charge over the 13 years studied here. The first 6 years (2002–2007)
had five of both the smallest discharges (and P loads) and the smallest
blooms. The last 8 years (2008–2015) had all but one of the seven
largest loads and seven largest blooms. This disparity can lead to a
conclusion that there is a trend toward increasing bloom intensity.
While a trend is possible, this pattern may also be a result of cyclicity
in precipitation. Nevertheless, higher discharges and phosphorus loads
of recent years also approximate conditions that are predicted to be
more common with climate change (Hayhoe et al., 2010; Stow, 2015).
In fact, precipitation and discharge have increased in the Maumee
River basin over the last several decades (Stow, 2015), and climate
change models forecast more frequent intense rainfalls in the region
(Michalak et al., 2013). These climatic factors do not mean that a



Fig. 9. Flow weighted mean concentration (FWMC) of the total bioavailable phosphorus
for March to July.
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given phosphorus load will produce larger blooms in the future, but
they do suggest that larger loads may become more common, increas-
ing the risk of larger blooms.

Need for increased understanding

What other factors are still not understood? Each of the outlier years
may provide information that lead to hypotheses that can be tested in
the future with more data, or with other types of models. The most
striking outliers are 2003, 2012, 2013, and 2015. In 2012, the bloom
was larger than expected given the extremely small loads (lowest of
all 13 years), but 2012 was also the only year that a small load followed
a year with a massive bloom. The 2011 bloom may have had a residual
impact on 2012, either in residual cyanobacterial cells or in excess
phosphorus available for internal loading. In 2012, the central basin
also had the largest measured hypoxia zone (Zhou et al., 2015), indicat-
ing unusual conditions that year. At this point, testing a residual impact
requires the occurrence of another drought year following a severe
bloom. To further complicate 2012, Lake Erie was ice-free in the preced-
ing winter (2011−2012), an uncommon event that occurred in one
other year (2006) in this time series (Bai et al., 2015).

The other outlier years have commonality in July loads. Of these,
2013 has no obviously unusual characteristics, except for the large July
load. In 2003, the bloom tended to be smaller than expected when
compared to the equivalent large bloom years and to the model rela-
tionships. Though the Microcystis biomass measured by Bridgeman
et al. (2013) indicates a locally strong and persistent bloom in 2003,
the measurements from the satellite do not appear to be an underesti-
mate as the bloom was localized primarily in and around Maumee Bay
(Stumpf et al., 2012). A chlorophyte bloom was still present in the
first week of August (Fahnenstiel, personal communication), and 2003
was cold in May as well as June (Fig. 6). Furthermore, 2003 was the
first time in several years that a severe Microcystis bloom occurred in
western Lake Erie. The combination of these factors suggests that
2003 was anomalous in several ways, possibly contributing to the
proportionately mild bloom. The other year with a cold June 2008,
shows a smaller anomaly, but this is consistent with the smaller July
load in 2008.

The 2015 bloom

The 2015 event pushed the limits of the system and models. The
monthly discharge was a record for June and the third greatest monthly
discharge since the USGS began collecting data in 1939. Even the July
load (Fig. 5, ESM Table S2) was larger than the entire March–July load
for three of the years (Fig. 4B). Unlike all other bloom years (Wynne
and Stumpf, 2015), the 2015 bloom started near the islands rather
than near the Maumee River mouth and did not appear in the far
western lake until weeks later. This was likely due to light limitation
from high turbidity associated with the storm event runoff and possibly
the change in timing and spatial distribution of the phosphorus loads.
The maximum bloom occurred in August, whereas other major bloom
years had a maximum bloom in September (Fig. 2). The dense scum
that formed over a large part of the western basin (NOAA, 2015) may
have led to an underestimate of the total biomass because the satellite
data cannot capture more information once scum completely covers
the entire area of water observed in each pixel. While 2015 fits a
March to June model (Fig. 4A), these many anomalous aspects of the
2015 bloom raise doubts about recommending a model based on the
fit of 2015.

The 2015 observations also suggest a limit to the non-linear relation-
ship between phosphorus load and biomass. An ecological reason for
the observed non-linearity is suggested by the strength of discharge
alone as a biomass predictor. If the Maumee phosphorus is dispersed
over a large area as a result of large discharge, then the bloom can also
develop over a larger area. As a result, the cells will have access to
more ambient phosphorus that did not discharge from the Maumee
River, leading to a non-linear relationship with Maumee phosphorus
loads. Eventually, growth must slow due to limitation of available
phosphorus or other factors like light, nitrogen, or micronutrients. The
resultant curve would resemble a familiar logistic growth model, with
2015 falling within the reduced growth phase. (As the 2011 bloom
peaked in the central basin, the bloom that year may have accessed
more central basin “non-Maumee” phosphorus than in other years,
leading to more biomass than might otherwise have occurred as sug-
gested by Obenour et al., 2014.) While a logistic function could be fit
through the data, there are too few data points to achieve a robust rela-
tionship for such amodel. A logistic functionmay improve prediction of
the extreme blooms like 2015, but it would not improve the under-
standing or prediction of the load response for the moderate blooms
until we have more years of data.

Flow weighted mean concentration

The spring (March to July) flow weighted mean concentration
(FWMC) of TBP from the Maumee River is near 0.10 mg L−1 (Fig. 9),
which is the TP concentration that Downing et al. (2001) found was
present when cyanobacterial dominance was most likely. This concen-
tration is much higher than what was observed in the 1990s because
the FWMC for DRP approximately doubled from then into the present
century (Baker et al., 2014a). Our models are not currently based on
FWMC, in part because FWMC has not changed drastically in the period
of time with concurrent satellite bloom estimates. Therefore, discharge
and phosphorus loads are all correlated. While discharge provides the
best model of the bloom intensity for an annual forecast, it is not the
most useful for setting nutrient reduction targets. The effectiveness of
discharge for predicting the annual biomass suggests that discharge
implicitly describes dispersion of phosphorus across the lake with that
dispersion potentially more important than the small interannual
variations in FWMC. One hypothesis for future scenario modeling for
phosphorus is to simply apply the (updated) average FWMC to the
discharge as a predictor. We anticipate that large changes in FWMC
would cause shifts in the modeled blooms compared to the current
time period, and FWMC can be influenced by management strategies,
unlike rainfall or discharge. Scenario forecasting efforts should use TBP
models to estimate bloom biomass, although seasonal predictions can
be made with discharge (Figs. 4C, D and 8A, Table 2). Further investiga-
tion of weighting factors for March to June will require other types of
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models as there are insufficient observations to parse annual patterns
with statistical climatological models. Evaluation with other models
may become important if future years have large loads in July. Future ef-
forts should closely monitor the FWMC for bioavailable phosphorus for
changes from the past 15 years.

Conclusions

The models developed here for western Lake Erie HABs can be used
for two core purposes: forecasting the severity of the seasonal bloom
and evaluating scenarios that would reduce the severity of HABs.
While both discharge and TBP loads from March through July were
good predictors of the biomass, they serve different purposes. Whereas
discharge continues to produce the least uncertainty in estimating the
relative annual bloom biomass, TBP provides the best information on
phosphorus loads suitable for bloom reduction strategies. Hence, strat-
egies for reducing the flow weighted mean concentration of TBP will
have the largest influence on reducing the severity of HABs. As the typ-
ical DRP concentration in the lake is below 0.02 mg L−1, a reduction in
the phosphorus concentration entering the lake will likely reduce the
area of the lake with concentrations that favor cyanobacterial blooms
(Downing et al., 2001), regardless of the river discharge. Because DRP
comprisesmost of the bioavailable phosphorus entering the lake, reduc-
ing the FWMC of DRP should be a critical component of the phosphorus
management plans, such as the Great Lakes Water Quality Agreement
(GLWQA, 2012). Future research should continue to examine the com-
position of TP as well as the bioavailability of particulate phosphorus.
FWMC should continue to be examined in detail, as it provides an indi-
cator that can be influenced by management strategies.

For understanding drivers of aquatic health, empiricalmodels have a
particular value in defining the actual conditions and providing a con-
trasting reference to deterministic simulation models such as the
WLEEM and ELCOM-CAEDYM used in Lake Erie (Scavia et al., 2016-in
this issue; Verhamme et al., 2016-in this issue). Nevertheless, outliers
may exist for a variety of different ecological factors and care must be
used to avoid over-fitting or over-interpretation of the data. Continued
monitoring of both tributary loads as well as the size of the bloom using
satellite imagery should help us observe unique patterns that point to
causes of these outliers. Each subsequent year of datawill lead to under-
standing of the impacts of new nutrient management strategies on the
timing of loading and bloom development. These models point to the
essential role that monitoring the health of our aquatic ecosystems
can play on ecological, economic, and social systems.
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