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Over the past two decades, western Lake Erie has experienced recurring summer cyanobacterial 
blooms that pose severe negative impacts on human, animal, and ecological health. Previous research 
has identified a strong correlation between annual cyanobacterial bloom intensity and preceding spring 
(March-July) phosphorus loading from the Maumee river, the largest tributary to western Lake Erie, which 
is used to predict upcoming summer bloom severity. Maumee river spring phosphorus load, however, 
does not explain all the variation of bloom severity between years. Considering additional environmental 
parameters may help to better capture the physical and biogeochemical processes that regulate bloom 
severity, eventually leading to improved cyanobacterial forecasts which serve as an early warning for 
Lake Erie stakeholders. We aggregated various environmental parameters that may influence western 
Lake Erie cyanobacterial blooms to examine these factors as potential predictors for annual bloom 
severity. These included nitrogen and phosphorus loading from the Maumee river, freshwater discharge 
from the primary rivers and tributaries (Detroit, Huron, Raisin, Maumee, and Portage rivers), seasonal 
lake surface water temperature (mean winter, spring, and summer temperature), and Lake Erie winter 
ice extent and duration from 2002-2022. Empirical model results show that spring phosphorus loading, 
as total bioavailable phosphorus, from the Maumee river remains the dominant environmental factor 
controlling cyanobacterial blooms. However, additional environmental factors, such as Maumee river 
winter phosphorus loads and Lake Erie winter ice extent and timing, are likely important in modulating 
bloom severity, particularly in years with moderate phosphorus loads. Finally, we suggest incorporating 
mechanistic or rule-based models, in addition to empirical models, to better understand and predict 
annual cyanobacterial bloom severity. The updated models not only improve seasonal forecast accuracy 
which provides advanced warning of bloom severity to Lake Erie stakeholders, but also helps identify 
which factors we can better manage to reduce the frequency of severe blooms.
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Introduction
Western Lake Erie began experiencing intense 

cyanobacterial blooms in the 1960s and 1970s, 

which led, in part, to the passage of the Clean Water 
Act in 1972 (e.g. Kane et al., 2014). The point-
source pollution reductions mandated by the act led 
to the recovery of the lake in the 1980s (Bridgeman 
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et al., 2013). Since the early 2000s, however, 
annual cyanobacterial blooms have reappeared in 
the western basin, with up to a 1000 km2 of bloom 
coverage during the most intense bloom years 
(Stumpf et al., 2012, 2016). One key factor in the 
resurgence of cyanobacterial blooms appeared to 
be the doubling of dissolved reactive phosphorus 
(DRP) concentrations, particularly in the Maumee 
river, starting in the mid-1990s through early-2000s 
(Baker et al., 2014). Almost all DRP is considered 
bioavailable and constitutes the largest fraction of 
total bioavailable phosphorus (TBP), the fraction 
of river phosphorus (P) loading that is directly 
available to phytoplankton (Baker et al., 2014). In 
addition, the Maumee river is the largest tributary 
to any Great Lake, dominating the river load in 
the southwestern part of Lake Erie’s western basin 
(Figure S1; Bocaniov et al., 2023; Maccoux et al., 
2016). Thus, there is a strong correlation between 
TBP loading from the Maumee river and annual 
cyanobacterial bloom severity (e.g. Kane et al., 
2014; Stumpf et al., 2016).

Due to this relationship, multiple empirical 
models have been developed which demonstrate 
a strong, positive relationship between TBP 
loading from the Maumee river and annual 
summer cyanobacterial bloom intensity (Bertani 
et al., 2016; Ho and Michalak, 2017; Obenour et 
al., 2014; Scavia et al., 2023; Stumpf et al., 2012, 
2016). This suite of empirical models has been 
used in the annual western Lake Erie Seasonal 
forecast, which provides an advanced warning 
of potential summer bloom severity to Lake Erie 
water treatment plant operators, coastal businesses 
reliant on tourism, and the broader management 
community. Overall, these empirical models have 
worked well in predicting upcoming annual bloom 
severity; however, not all the variation between 
years is completely explained by TBP loading 
(e.g. Ho and Michalak, 2017; Scavia et al., 2021, 
2023; Stumpf et al., 2016). For example, Stumpf et 
al., (2016) hypothesized that early summer water 
temperatures may influence the overall bloom 
uptake of TBP, with cooler temperatures in June 
leading to reduced TBP uptake and bloom growth 
in subsequent months. Other studies have proposed 
that TBP loading from multiple previous years may 
be an additional factor in annual bloom severity (Ho 
and Michalak, 2017; Scavia et al., 2023), however, 
this would likely alter longer term trends in the base 

level of the blooms, rather than specific interannual 
bloom variability. In addition, with climate change, 
western Lake Erie is also seeing other changes in 
physical properties such as decreased winter ice 
cover (Ozersky et al., 2021; Wang et al., 2012).

In this study, we examined several environmental 
parameters that likely influence bloom severity, 
including nutrient loading from the Maumee river 
and various physical characteristics of the western 
Lake Erie basin, coupled with empirical modeling, 
to identify potential environmental factors that may 
influence interannual variability of cyanobacterial 
bloom severity. We hypothesized that spring TBP 
loading from the Maumee river would be the 
dominant driver of cyanobacterial bloom intensity, 
but that additional environmental variables would 
further modulate annual bloom severity. Ultimately, 
we seek to use these updated empirical models to 
better predict upcoming summer bloom severity 
(NOAA, 2022) and will be directly incorporated 
into the annual western Lake Erie Seasonal 
forecasts provided to lake managers.

Methodology

Annual cyanobacterial bloom intensity

Western Lake Erie cyanobacterial bloom 
intensity was obtained from satellite imagery 
as described in Stumpf et al., (2016). The data 
sets were obtained from the Medium Resolution 
Imaging Spectrometer (MERIS, 2002-2011), the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS, 2012-2018), and the Sentinel-3 Ocean 
and Land Colour Instrument (OLCI, 2019-
2022), as the replacement for MERIS. Wynne 
et al., (2021) applied a multiplier to the MODIS 
data which allows for the direct comparison of 
MODIS to MERIS/OLCI images. Sequential 10-
day composite images were generated following 
the methods of Stumpf et al., (2012) and Wynne 
and Stumpf (2015). The composites were created 
from the maximum cyanobacterial chlorophyll-
related index (CI) value for each map pixel from 
individual scenes (Stumpf et al., 2012; Wynne 
and Stumpf, 2015; Figure S2). Generating 10-
day composites provides several advantages over 
single-day images by removing interference from 
clouds and capturing maximum bloom extent 
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during calm winds when cyanobacteria can be 
more easily seen by satellite. Finally, for each 
10-day period, all the pixels in the western basin 
were summed to obtain the total biomass in CI 
units (Stumpf et al., 2016). The resulting annual CI 
max was used to estimate annual bloom severity. 
CI has units of dimensionless reflectance but can 
be equated to cyanobacterial concentration by: 
1 CI=108 Microcystis cells ml-1 (Lunetta et al., 
2015). In addition, a severity index (SI), which is 
used in annual bloom severity reporting (NOAA, 
2022), was used to identify annual blooms with low 
and high biomass. The SI uses the average of the 
biomass in the three 10-day composites with the 
greatest biomass, normalized by log-scale with a 
value of 1 corresponding to the SI for 2005, and 10 
corresponding to the SI in 2011 (Table S3).

Environmental and nutrient data

We aggregated a variety of environmental 
and nutrient loading data from openly available 
sources, which could be used as potential predictors 
of cyanobacterial bloom severity. Freshwater and 
nutrient loading from the Maumee river were 
obtained from Heidelberg University’s National 
Center for Water Quality Research (NCWQR, 
2022), including TBP and dissolved inorganic 
nitrogen (DIN) from 2002-2022. Spring monthly 
(March, April, May, June, July), spring (March-
July), and winter (November-February) loads were 
summed from daily freshwater flow and nutrient 
concentrations (Richards et al., 2009). TBP was 
calculated from total P and DRP following Baker 
et al., (2014), where total bioavailable particulate 
P was calculated as the proportion (β=0.26) of 
total particulate P (total particulate P=total P - 
DRP). A settling term was also applied to the total 
bioavailable particulate P to account for settling 
of particulate P from the location of monitoring 
(Waterville, OH) to western Lake Erie (S=0.70). 
Finally, TBP is the sum of total bioavailable 
particulate P, scaled for settling, and DRP (Baker 
et al., 2014). DIN loads were calculated by 
summing nitrate (NO3

-) and ammonium (NH4
+) 

loads. NO3
- loads were calculated as noted above, 

whereas monthly NH4
+ loads were calculated by 

extrapolating weekly NH4
+ concentrations using 

the monthly NH4
+:NO3

- ratio. TBP and DIN loads 
were used to calculate molar DIN:TBP (Figure S3).

In addition, we estimated the proportion of 
freshwater flow from the Maumee river as compared 
to other major tributaries entering the western 
basin including: the Huron, Raisin, and Portage 
rivers (Figure S1). Freshwater flows were obtained 
from the most downstream USGS gauging station 
(Table S1) and scaled to the ungauged watershed 
area. The proportion of Maumee river flow was 
calculated by dividing the Maumee river flow by 
the total tributary flow for the spring period. We 
estimated spring (March-July) Detroit river flow 
using monthly connecting channel flows provided 
by the U.S. Army Corps of Engineers-Detroit 
District (Figure S1, S4; D.C. Fielder, USACE-
Detroit District, Detroit, MI, USA, pers. comm.). 
Flow from the Detroit river was not included in the 
proportion of Maumee river flow. Due to its low 
TBP concentration (~0.01 µg l-1 vs. 0.1 µg l-1 for the 
Maumee River), the Detroit river acts as a diluent 
in the western basin, rather than a source of TBP 
for summer cyanobacteria blooms (e.g. Bocaniov 
et al., 2023; Burniston et al., 2018; Downing et al., 
2001).

Finally, we included several environmental 
parameters such as lake surface water temperature 
(SST), winter ice cover extent and duration, and the 
number of low wind speed days during the early 
bloom season. Lake SST was estimated via MODIS 
thermal data obtained from NASA Giovanni 
(NASA, 2023a, 2023b; Wynne et al., 2022). Night 
and day SST were averaged seasonally for winter 
(January-March), spring (April-June), and summer 
(July-September) from 2003-2022. Winter ice 
cover extent and duration from 2002-2022 for 
Lake Erie was obtained from NOAA’s Great Lakes 
Environmental Research Laboratory and included 
the percent of maximum ice cover and day of 
maximum ice extent (GLERL, 2022). The day of 
maximum ice extent was then converted to day of 
year (DOY). While we acknowledge that the central 
and eastern basins likely play a role in controlling 
Lake Erie ice cover, we assume that patterns 
observed in all Lake Erie basins are representative 
of winter conditions in western Lake Erie. Finally, 
we used the number of low wind speed days during 
the early bloom season (July-August) as an estimate 
of internal nutrient loading due to potential periods 
of hypoxia/anoxia (Bridgeman et al., 2006). Briefly, 
hourly wind data were obtained from the Toledo 
Light weather station (NDBC, 2023) and averaged 
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to daily values. Daily wind values <3 m s-1 were 
summed for the two-month period (July-August) 
for each year from 2005-2022 (Figure S5). We note 
that our identification of hypoxic/anoxic events 
is an over-simplification and does not explicitly 
account for other environmental conditions that 
might lead to these events, including entrainment 
of hypoxic bottom water from the central basin 
(Jabbari et al., 2019) and increased respiration due 
to elevated temperature (Bridgeman et al., 2006).

Empirical modeling

We used several empirical models to identify 
important predictors of western Lake Erie annual 
bloom severity. First, we applied the standard 
least squares linear regression model developed 
by Stumpf et al., (2016) which identified a strong, 
positive relationship between log10(CI max) and 
spring Maumee river TBP loading. Specifically, 
we used the unweighted, March-July TBP model 
following:

     CI Max = b * 10(a*Mar-Jul TBP Loading)  (Eq. 1)

where b=0.37 and a=3.26x103 (Stumpf et al., 
2016). We then updated the standard least squares 
linear regression between log10(CI max) and spring 
TBP loading using available data from 2002-2022. 
We excluded 2003 and 2013 as anomalous years 
during model fitting (n=19; Stumpf et al., 2016).

Next, we categorized historical blooms based on 
their annual SI where low blooms were classified 
as SI<5 and high blooms were categorized as 
SI>5 (Table S3). We then applied a single logistic 
regression to the categorized data using Maumee 
river spring TBP loading as the predictor variable. 
We excluded 2003 as a year with an anomalously 
high spring TBP loading, but low overall bloom 
severity (Stumpf et al., 2016).

We also identified other environmental 
variables that could explain some of the additional 
variability in annual cyanobacterial bloom severity. 
To accomplish this, we conducted a series of 
multiple linear regressions. We first removed 
any collinear (Pearsons correlation coefficient, 
ρ>0.7) environmental variables (Table S2). We 
then developed an algorithm to randomly select 
up to two environmental variables to be used in 
forward, stepwise multiple linear regression. The 
developed models were then ranked by the Akaike 

Information Criteria (AIC) and the models within 2 
AIC of the best fit model were selected for further 
analysis. For multiple linear regression, we used all 
years with available data for model fitting (2005-
2007, 2009-2014, 2016-2019, 2021; n=14; Table 
S3). All data visualizations and empirical modeling 
were conducted in R v4.1.0 (R Core Team, 2021).

Results
Overall, the composited 10-day accumulated CI 

was highly variable (Figure 1). 2011 had the highest 
median 10-day CI (7.72), followed by 2015 (7.45), 
and 2013 (5.73). 2011 also had the highest CI max 
(29.9), followed by 2015 (29.2), then 2017 (15.5). 
2019 had the highest CI max in the past five years 
(11.5) while 2022 had the highest median 10-day 
CI (3.3). The aggregated environmental predictors 
were also highly variable among years and between 
months and seasons (Figure 2, S3, S4, S5; Table 
S4). Total spring TBP loading ranged from 89 
metric tons (mton) in 2012 to 722 mton in 2015 
with a mean of 344±155 mton (Figure 2). For July, 
TBP loading ranged from 1.33-216 mton in 2012 
and 2015 respectively, with a mean of 40.7±58.3 
mton (Figure 2). Throughout the study period, the 
proportion of Maumee river flow to total tributary 
flow (i.e. from the Maumee, Huron, Raisin, and 
Portage rivers) into western Lake Erie remained 
>65% with a mean of 77±4.2% (Figure S4). 
Seasonal lake SST was relatively consistent among 
years (2004-2022; Figure 2; Table S4). Percent 
of maximum winter ice cover for Lake Erie was 
generally high with a few years of <50% ice cover 
(2002, 2006, 2012, 2017, 2020) and mean percent 
maximum winter ice cover of 75±32% (Figure 3). 
Finally, the day of year (DOY) of ice off ranged 
from 3 (2002) to 70 (2008) with a mean of 43±16 
days (Figure 2).

Prior to empirical modeling, we removed 
environmental and nutrient parameters that were 
highly linearly correlated (ρ>0.70; Table S2). 
Monthly and seasonal TBP loading were highly 
correlated with freshwater discharge (Q) and DIN 
loading. Ultimately, we removed all monthly 
and seasonal Q and DIN loading. In addition, we 
removed all monthly TBP loading for March, April, 
May, and June; only retaining winter (November-
February), spring (March-July), and July TBP 
loading for modeling.
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Empirical model results

First, we updated the logarithmic relationship 
between CI max and Maumee river spring TBP 
loading following methods in Stumpf et al., (2016) 
and using the full dataset (2002-2022, excluding 
2003, 2013; Figure 3). Similar to previous studies, 
we found a strong, positive correlation between 
log10(CI max) and Maumee river spring TBP 
loading (adjusted r2=0.76; Table 1). Model residuals 
(modeled-observed) suggest the 2023 model (this 
study) was marginally better at predicting annual 
CI max, especially for high bloom years such 
as in 2015 (Figure 2). In both cases, 2022 had a 
relatively large error (Figure 3b). The two fits 
matched closely for TBP loading<400 mtons, and 
deviated as the load increased.

Logistic regression results suggest Maumee 
river spring TBP loading can be used to distinguish 
overall bloom severity (low vs. high blooms), for 
loads <273 mtons or >332 mtons. Between 273-
332 mtons, the model was less able to predict 
bloom severity, which included three years with 
low blooms: 2007, 2018, 2020, and three with high 
blooms: 2009, 2021, and 2022. Finally, multiple 
linear regression identified three models that were 
within 2 AIC of the best-fit model (Table 1) and 
included a combination of: a positive relationship 
with Maumee river spring TBP loading and DOY 
of maximum ice extent, but a negative relationship 
with Maumee river winter TBP loading. Adjusted 
r2 for the three identified models ranged from 0.65-
0.66.

Discussion

Temporal variability of western Lake Erie 
cyanobacterial blooms

Overall, there was a high degree of inter- and 
intra-annual variability in the observed 10-day 
accumulated CI and CI max from 2002-2022, which 
likely reflects a range of competing external (i.e. 
nutrient loading, freshwater delivery) and internal 
(i.e. internal nutrient loading, light availability, 
water column mixing) environmental factors that 
modulate bloom severity. Several years had a wide 
range in 10-day accumulated CI values, including 
years with anonymously high 10-day periods 
(2003, 2008, 2009, 2010, 2011, 2017; Figure 1), 
that skewed the overall CI max. We note that the 
current method of assessing annual bloom severity 
(i.e. CI max) does not explicitly take into account 
temporal variability during the bloom. Thus, this 
may overestimate annual bloom severity by relying 
on a single 10-day period with abnormally high 
accumulated CI or it might underestimate bloom 
severity for years when there were multiple 10-
day periods with similarly high accumulated CI. 
However, the CI max and CI average for the 30-day 
period are closely correlated (Stumpf et al., 2016). 
While updates to the CI max are likely needed to 
take into consideration both the maximum and 
the temporal intensity of the bloom over multiple 
10-periods, the current CI max does reflect the 
maximum bloom severity, such that models of 

Figure 1. Boxplots of 10-day accumulated cyanobacterial index (CI) for the bloom season (July-October) along with a bar plot 
(gray bars) of maximum CI (CI max). For boxplots, the boxes represent the interquartile range (25th and 75th percentile), while 
the thick, horizontal line shows the median weekly accumulated CI. The vertical lines represent the minimum (25th percentile-
1.5⨯Interquartile range) and maximum (75th percentile+1.5⨯Interquartile range). Points represent anomalous 10-day accumulated 
CI for that year (>1.5⨯Interquartile).

Downloaded From: https://bioone.org/journals/Aquatic-Ecosystem-Health-&-Management on 31 Jul 2024
Terms of Use: https://bioone.org/terms-of-use	Access provided by University of Michigan



Hounshell et al. / Aquatic Ecosystem Health and Management 26 (2023) 63–7568

CI max can be used to reliably predict maximum 
annual bloom severity (Stumpf et al., 2012, 2016).

Spring phosphorus loading from the 
Maumee river is the dominant driver of 
annual bloom severity

Following Stumpf et al., (2016), Maumee river 
spring TBP loading was still a reliable predictor of 
annual maximum bloom severity (Table 1; Figure 
3). The most apparent difference between the 
Stumpf et al., (2016) model and the model presented 
here (2023) was for high bloom years, primarily 
driven by 2015, but also due to intense blooms 
in 2017 and 2019. We do note that this regression 
results in a non-linear relationship between CI 
max and TBP loading (Figure 3), such that higher 
spring TBP loads lead to a proportionally larger 
annual bloom severity as compared to smaller TBP 
spring loads. A similar non-linearity has appeared 
in other models (e.g. Obenour et al., 2014; Scavia 
et al., 2023). This change with load suggests that 

either small blooms are less effective at using the 
available TBP, or less of the TBP is available to 
blooms during low load years.

Most relationships developed using TBP 
loading as a predictor of bloom severity, rely on 
TBP loads from the Maumee river, thus making the 
assumption that the majority of P originates from 
the Maumee watershed (e.g. Ho and Michalak, 
2017; Scavia et al., 2023; Stumpf et al., 2016). 
To confirm this, we used the annual proportion 
of Maumee river flow to scale Maumee river 
TBP loading to total potential TBP loading for 
the entire western basin, as a predictor for annual 
bloom severity (Figure S6). While this resulted in 
a slight reduction in total model RMSE (4.66 to 
3.91 CI max for un-scaled and scaled TBP loads, 
respectively), overall, the total TBP loading did 
not substantially improve model results. While not 
an exact representation of overall TBP loading to 
western Lake Erie, this supports the assumption 
that Maumee river loading is the dominant source 
of external P for summer cyanobacterial blooms, 

Figure 2. Selected environmental parameters plotted from 2002-2022 and used as potential predictors for annual cyanobacterial 
bloom intensity including: A) Monthly total bioavailable phosphorus (TBP) loading from March-July (mton); B) western Lake Erie 
seasonal sea surface temperature (SST, oC) as estimated using NASA Giovanni data for winter, spring, and summer; and C) Day of 
year (DOY) of maximum ice extent for the entirety of Lake Erie.
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and is suitable for empirical models used to 
estimate overall bloom severity. Future studies 
and mechanistic modeling efforts should, however, 
consider loads from additional river sources.

Following studies which have found the Detroit 
river to be a substantial source of river P load to 
Lake Erie, we also included spring Detroit river 
load as a potential environmental predictor. While 
the Detroit river is a substantial freshwater and 
nutrient source to Lake Erie (Bocaniov et al., 2023; 
Burniston et al., 2018; Scavia and Calappi, 2023), 

our results show it was not a factor in determining 
summer cyanobacterial bloom severity. As 
compared to the Maumee, the Detroit river has 
about an order of magnitude lower bioavailable P 
concentrations (~0.01 μg l-1 total P, with about half 
being DRP vs. ~0.1 μg l-1 for Maumee TBP flow 
weighted mean concentration; Bocaniov et al., 
2023; Burniston et al., 2018; Scavia and Calappi, 
2023). The Detroit river also tends to have relatively 
little interannual variability in P load, with more 
variation occurring in long term trends associated 

Figure 3. Regression results for the updated total bioavailable phosphorus (TBP) model. A) Comparison of observed and calculated 
cyanobacterial index (CI) max. Gray asterisks indicate cool June years (2003, 2008) when March-June loading was used, following 
Stumpf et al., (2016). The dashed line represents the 1:1 line. Results are plotted as log10 values for visualization. B) Model residuals 
(modeled-observed) plotted for the Stumpf et al., (2016) model and the updated TBP model (2023) from this study. C) Logarithmic 
relationship between annual CI max and spring (March-July) TBP loading. The dashed line is the relationship observed in Stumpf 
et al., (2016) while the solid line is the relationship identified in this study (2023). The vertical dashed lines indicate 273 mtons TBP 
loading and 332 mtons TBP loading, respectively, as it corresponds to the logistic regression below.
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with Great Lakes water levels (Scavia and Calappi, 
2023). In addition, blooms were shown to develop 
in Maumee Bay during the early bloom season 
(July-August) where TBP concentrations from the 
Maumee river are high, and are rarely observed 
in the Detroit river plume (Wynne and Stump, 
2015). While we cannot discount the Detroit river 
flow as an important contributor to background TP 
concentrations in the western and central basins of 
Lake Erie, our results suggest it is not the driving 
factor of western basin cyanobacterial bloom 
intensity.

Finally, we identified a relationship with spring 
TBP loading to separate low and high blooms, based 
on bloom SI, where low blooms were identified 
with >75% certainty at TBP loads <273 mton and 
high blooms were identified with >75% certainty 
at TBP loads >332 mton (Figure 4). This suggests 
there are TBP thresholds at which we can reliably 
predict a low versus high bloom which may help to 
guide early season predictions for upcoming bloom 
severity. Conversely, this also implies there is a 
range of TBP loads (273-332 mton) where we are 
unable to use spring TBP loading to reliably predict 
bloom size, suggesting additional environmental 
parameters may be necessary to fully separate 
blooms by size.

While Maumee river spring TBP loading was 
identified as the primary environmental variable 
constraining annual CI max in all regression 
models, one multiple linear regression model also 
identified a negative relationship with Maumee 
river winter TBP loading. The negative relationship 

was surprising, given the strong correlation 
between spring TBP loading and annual bloom 
severity, as well as studies that have identified 
western Lake Erie as primarily P-limited (Chaffin 
et al., 2014; Steffen et al., 2014). We hypothesize 
the negative relationship with winter TBP loading 
is a proxy for winter temperature and precipitation 
conditions that influence both watershed and 
in-lake processes. First, higher winter TBP 
loading implies a warmer winter, which could 
decrease spring runoff due to drier soil antecedent 
conditions. Second, differences in winter TBP 
loading may influence winter under-ice (Beall et 
al., 2016) and/or spring diatom blooms that occur 
nearly annually in western Lake Erie (Reavie et al., 
2014). Specifically, higher winter TBP loading may 
fuel larger winter or spring phytoplankton growth, 
altering the timing, duration, and intensity of these 
blooms which may influence the availability of P 
into summer.

While external TBP loading was shown to be a 
dominant driver of annual bloom severity, we note 
that we did not explicitly include a term for internal 
P loading, which may be a potentially important 
source of P for western Lake Erie cyanobacterial 
blooms (Bocaniov et al., 2023; Matisoff et al., 
2016). The overall magnitude of internal P-load 
would be influenced by both sediment disturbance 
and by the development of near-bottom hypoxia, 
which varies annually (Matisoff et al., 2016). 
However, determining the exact role of hypoxia-
driven internal P-loading, requires additional 
modeling efforts to account for temporary water 

Table 1. Linear regression (TBP model) and multiple linear regression results for the top three identified models (Model 1-3). 
Multiple linear regression models were included if they were within 2 Akaike Information Criteria (AIC) of the best-fit model. 
Columns include the model intercept, spring (March-July) total bioavailable phosphorus (TBP) loading, day of year (DOY) of 
maximum ice extent, and winter (November-February) TBP loading. The AIC adjusted r2 (Adj. r2), and root mean square error 
(RMSE) are reported. The mean and standard error (mean ± standard error) are reported for each variable.

Intercept Spring TBP DOY Winter TBP AIC Adj. r2 RMSE

TBP Model -0.146 ± 
0.117

2.4x103 ±
3.2x104

0.76 4.66

Model 1 -0.095 ± 
0.134

2.3x103 ± 
3.6x104

-41.47 0.66 4.31

Model 2 -0.153 ± 
0.187

2.2x103 ± 
3.7x104

1.6x103 ± 
2.5x103

-41.81 0.65 4.37

Model 3 -0.0720 ± 
0.208

2.4x103 ± 
4.0x104

-4.9x105

± 3.3x104
-42.64 0.65 4.32
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column stratification and subsequent hypoxic 
events. Additional internal loading during high 
biomass years, when hypoxia might be more likely, 
may be an additional source of P during high bloom 
years, contributing to the non-linear relationship 
observed between CI max and spring TBP.

Other environmental variables modulate 
annual bloom severity

While Maumee river spring TBP loading was 
identified as a reliable predictor of cyanobacterial 
bloom intensity, there was still variability in our 
ability to accurately estimate annual blooms. The 
TBP model assumes that all TBP loading from the 
Maumee river is used by the cyanobacterial bloom; 
however, in some years, this relationship led to an 
overestimation of bloom severity (i.e. 2003, 2007) 
while in others, it led to an under-estimation (i.e. 
2013, 2022; Figure 3). In addition, the logistic 
relationship used to identify low versus high 
blooms under-estimated blooms in 2009, 2021, and 
2022, but over-estimated blooms in 2007, 2018, 
and 2020, which corresponded to years with TBP 
loads between 273-332 mton. Below, we discuss 
other environmental variables that may further 
constrain annual bloom severity.

For example, Stumpf et al., (2016) identified 
June water temperature as a modulator for the spring 
TBP versus CI max relationship. Specifically, they 
hypothesized that a cool June (water temperature 

<20oC) resulted in lower uptake of TBP during 
the early bloom, negating the influence of the July 
TBP load. Instead, they used March-June TBP 
loading to estimate bloom severity for years with 
June water temperatures <20oC, which helped to 
adjust the predicted CI max (Figure 3). In 2007, 
an anomalously high flow event occurred in late 
August (Figure S7; Baker et al., 2014; Bridgeman 
et al., 2013), which likely disrupted the bloom by 
either introducing turbidity or flushing the bloom 
into the lake. Wynne and Stumpf (2015) found that 
blooms begin rapid expansion during the last 10 
days of August; thus, it is possible that this elevated 
discharge event in August 2007 led to a smaller 
bloom than was predicted by spring TBP loading.

We also hypothesize that July TBP loading may 
further modulate bloom severity. For example, low 
bloom years in the mid-TBP loading range (273-
332 mton; i.e. 2007, 2018, 2010; Figure 4) had 
July TBP loads <5.75 mtons which is substantially 
lower than both the mean (40.7 mton) and median 
(9.7 mton; Table S4) loads. In contrast, both 2021 
and 2022, which were high blooms under this 
same TBP range, had substantially higher July 
loads (90.3 and 42.5 mton, respectively). The 2009 
bloom had a low July TBP load (2.2 mton), but had 
no load feature that distinguished it from the low 
bloom years within this TBP range. The complexity 
of bloom variability is evident, but the result for 
five out of six years suggests that the timing of TBP 
loads, as lower or higher July loads may modulate 

Figure 4. Results from the logistic regression used to identify low (0) and high (1) bloom years based on total bioavailable 
phosphorus (TBP) loading as measured from March-July. The horizontal dashed lines indicate 25% (273 mton TBP loading), 50% 
(303 mton TBP loading), and 75% (332 mton TBP loading) certainty, respectively. The vertical dashed line corresponds to the TBP 
loading at 50% certainty. The blue box represents TBP loading from 25-75% certainty.
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the overall spring TBP loading relationship. The 
relative influence of July loads will likely become 
clearer over the next few years, given that 7 of the 
last 10 years had July loads exceeding the 20-year 
median (Table S3, S4).

Finally, we speculate that winter ice cover 
might also influence annual bloom severity. We 
found that the DOY of maximum ice extent was 
identified as having a weak, positive relationship 
with bloom severity (Table 1). Similarly, extensive 
Lake Erie ice cover was more common in winters 
prior to high bloom years, where 9 out of 10 years 
had ≥84% maximum ice cover, while in low bloom 
years, 4 out of 10 years had ≤22% cover. As noted 
earlier, we hypothesize that cooler winter and 
spring temperatures alter the delivery of spring 
nutrient loading as well as the duration and intensity 
of under-ice winter (Beall et al., 2016) and spring 
diatom blooms (Reavie et al., 2016), which could 
influence summer blooms.

Study limitations and future directions

While this study represents an increase in the 
amount of data used to identify environmental 
predictors of western Lake Erie cyanobacterial 
bloom intensity, we still acknowledge some study 
limitations. First, we focused on TBP due to the 
extensive literature which has identified Maumee 
river TBP loading as the dominant factor driving 
cyanobacterial blooms (Bertani et al., 2016; Ho 
and Michalak, 2017; Obenour et al., 2014; Scavia 
et al., 2023; Stumpf et al., 2012, 2016). While there 
is an inherent autocorrelation among Q, DIN, and 
TBP loading (Table S2), spring DIN:TBP in the 
Maumee river suggests substantially more N than P 
in incoming loads (mean molar DIN:TBP=118±33; 
Figure S3; Table S4). Similarly, Stow et al., (2022) 
found that TBP loads from the Maumee river have 
almost doubled over the past 30+ years while 
DIN loads have remained relatively constant, all 
while summer cyanobacterial bloom intensity has 
increased. Finally, the western basin is largely 
P-limited, especially during the early and peak 
bloom season, and does not become N-limited 
until after the bloom is established (Chaffin et al., 
2014; Steffen et al., 2014). These lines of evidence 
suggest that TBP is still the dominant driver of 
annual cyanobacterial bloom intensity, though 
N-limitation is likely a factor during the late bloom 

season (Chaffin et al., 2013; Jankowiak et al., 
2019).

Second, the majority of annual bloom prediction 
models rely on statistical relationships between 
Maumee river TBP loading and cyanobacterial 
bloom severity. While TBP loads are the dominant 
driving factor of bloom intensity, this study 
suggests other environmental factors modulate this 
relationship. With the relatively small number of 
study years (~20 years) and the large number of 
environmental variables (>20) identified, statistical 
models cannot accurately represent how additional 
environmental variables may work to modulate 
bloom severity. While they can guide hypotheses, 
additional years of data are needed to elucidate 
these relationships more clearly.

These limitations suggest additional modeling 
strategies are likely needed. The information 
gleaned from the broad range of statistical models 
(e.g. Ho and Michalak, 2017; Scavia et al., 2023; 
Stumpf et al., 2016), along with experimental 
and modeling studies, can be used to develop 
mechanistic models which may help to fill some 
of the gaps left by empirical models, including 
dynamic, process-based, numerical models like the 
Western Lake Erie Ecosystem Model (WLEEM; e.g. 
Verhamme et al., 2016). Empirical models are also 
unable to account for any fundamental ecosystem 
changes that may have occurred which influence 
annual bloom severity, limiting the ability of these 
relationships to predict future ecosystem changes. 
Finally, in a predictive framework, we are limited to 
environmental parameters that can be appropriately 
forecasted, such as river discharge forecasts 
produced for the Maumee river (OHRFC, 2023) or 
previously observed winter or spring temperature. 
Thus, while empirical models are useful in 
predicting upcoming bloom severity, we argue 
that additional, mechanistic or rule-based models, 
will help to better identify other environmental 
processes modulating bloom severity and enhance 
our ability to predict upcoming bloom severity.

Providing advanced warning for the Lake 
Erie management community

Recurring summer cyanobacterial HABs 
pose severe negative impacts on human, animal, 
and ecological health, which impact drinking 
water resources, lead to beach closures, and 
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may discourage or prevent people from fishing, 
swimming, boating, or visiting the shoreline. Since 
2016, the annual western Lake Erie seasonal forecast 
has provided advanced warning to lake managers, 
drinking water treatment plant operators, and the 
general public on the potential bloom severity 
for the upcoming summer. The updated and new 
empirical models developed in this study will be 
directly incorporated into these annual forecasts, 
improving our ability to provide advanced warning 
of potential bloom severity to the Lake Erie 
management community. In addition, previous 
relationships between Maumee river TBP loading 
and annual bloom severity were used to identify the 
necessary 40% reduction in watershed TBP loading 
needed to reduce overall cyanobacterial bloom 
severity (Annex 4 Objectives and Targets Task 
Team, 2015). Additional analysis from this study 
could help to identify additional environmental 
factors to better manage the frequency of severe 
blooms in the future.

Conclusions
Overall, results from this study show that 

Maumee river spring TBP loading is still the 
dominant factor controlling annual western Lake 
Erie cyanobacterial bloom severity and can be 
reliably used to predict upcoming bloom severity 
(Bertani et al., 2016; Ho and Michalak, 2017; 
Obenour et al., 2014; Scavia et al., 2023; Stumpf et 
al., 2012, 2016). Thus, we recommend continuing 
to use established relationships between Maumee 
river spring TBP loading and annual bloom severity 
for seasonal cyanobacterial bloom predictions. 
However, our results suggest additional models 
should be considered to distinguish the threshold 
between a low or high blooms, especially during 
the early spring season when predictions of 
annual spring TBP loading may be more variable. 
Results also suggest we are likely missing key 
environmental factors that further modulate bloom 
severity, particularly in the mid-TBP loading range 
(273-332 mton). Under these mid-range conditions, 
additional environmental parameters may be 
needed to better predict bloom severity. Due to the 
limited years of data, these additional relationships 
are still under consideration, though winter TBP 
loading, as well as winter ice dynamics, along 

with July TBP loading, may be important. We 
suggest that alternative, mechanistic or rule-based 
models which can explicitly incorporate known 
mechanisms, are an important future direction for 
annual bloom severity predictions, which would 
also allow for future climate predictions to be 
incorporated into models. Importantly, these and 
future model updates will be incorporated into the 
NOAA western Lake Erie Seasonal Forecasts to 
provide advanced warning of upcoming summer 
bloom severity to the Lake Erie management 
community and can help identify additional 
environmental factors to better manage the 
frequency of severe blooms.
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