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Appendix S1.  

Additional ancillary data 

To interpret the historical record (Fig. 1), bloom extent in certain years is compared to 
concurrent in situ chlorophyll-a (chl-a) measurements and local wind stress and wind direction 
information. Chl-a is a proxy for phytoplankton abundance, and strong winds influence bloom 
extent through mixing (Wynne et al., 2010). We use surface measurements of chl-a from the U.S. 
EPA Great Lakes National Program Office (EPA GLNPO, 2012); wind direction from National 
Data Buoy Center Station 45005 (NOAA NDBC, 2015); and buoy measurements of wind speed 
(NOAA NDBC, 2015), from which wind stress τ [Pa] is derived: 

 𝜏 = 𝜌𝑤2[0.001(0.69 + 0.081𝑤)] (S1) 

where ρ is the air density, estimated as 1.25 kg/m3, w is the mean hourly wind speed [m/s], and 
the term in square brackets [unitless] is an empirical drag coefficient estimated by Hsu (1974), 
following the approach of Wynne et al. (2010). 

Impact of dreissenids and other potential explanatory factors 

In addition to exploring the impact of loading, we also examined whether the impact from 
dreissenid mussels could aid in explaining the historical bloom record. The invasion by 
dreissenid mussels was complete by the early-1990s (Allinger and Reavie, 2013), and was well-
documented to have changed water clarity and nutrient cycling in Lake Erie (Vanderploeg et al., 
2001).  

We performed two analyses to test whether the pre- and post-dreissenid distinction 
explained any additional variability beyond loading. First, we identified variables that explained 
bloom size during only the pre- (1984-1992) or post- (1993-2015) dreissenid periods. In both 
periods, a two-variable model including one spring loading variable and one decadal-scale 
cumulative loading variable explained a substantially greater proportion of variability than either 
a spring or cumulative variable alone. Second, we explored whether a binary variable stratifying 
pre- and post-dreissenid years was useful in explaining variation over the whole period. We 
found that the best model that included this variable (a two-variable model with the binary 
variable and March-July DRP) explained only 55% of the variability across the whole period, 
and a standard F-test showed that adding this binary variable to the spring loading term did not 
improve model fit significantly (p=0.20). We therefore observed no evidence that the presence of 
dreissenids provided significant additional explanatory power, either beyond or as a surrogate for 
springtime or long-term loading. 

We also found no evidence of systematic differences in how the Landsat algorithm 
captures bloom size before vs. after the appearance of dreissenids, despite the changes in 
turbidity associated with dreissenid mussels (Budd et al., 2001) and shifts in the phytoplankton 
community during this time (Table 1). The consistency of the model in Eqn. 2 between the 
historical (1984-2000) and current (2001-2015) periods (Table 2) is also indicative of this, as are 
consistencies between the Landsat-observed decline in bloom area and documented decreases in 
phytoplankton biomass in the late 1980s (Ho et al., 2017). The inclusion of a “greenness” filter 
in the algorithm for improving accuracy in areas with higher turbidity (Ho et al., 2017) further 
mitigates any impact due to changes in water clarity.
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Table. S1. Posterior probabilities of individual variables (Yadav et al., 2010), based on 
Bayesian model averaging (Raftery et al., 1997) of all possible two-variable models. Of 
the variables in Section 2.3, only those with a posterior probability above 1% are listed 
here. The posterior probability P is a measure of the importance of a variable in 
explaining the observed variability in bloom extent (with higher probabilities 
corresponding to greater importance), when considering all possible sets of two candidate 
variables. Note that these probabilities should not be confused with p-values, which 
instead denote a level of statistical significance.  Shading indicates the relative 
probabilities, with dark grey for P>0.15, light grey for 0.15>P>0.05, and white for 
0.05>P>0.01. Note that TBP (θ=0.63) and TP do not appear in the table because none of 
the variables based on these quantities had a probability exceeding 1%. 

 DRP Discharge TBP 
(θ=0.138) 

Sp
ri

ng
 lo

ad
in

g 

March-July 0.01   

April-June 0.11   

April-July 0.15 0.34 0.05 

April-August 0.01 0.04  

April-September 0.02 0.10 0.01 

May-June 0.01   

May-July 0.02 0.03  

All monthly aggregations 0.36 0.54 0.09 

C
um

ul
at

iv
e 

lo
ad

in
g 

8-year 0.01   

9-year 0.27  0.07 

10-year 0.17  0.03 

11-year 0.12  0.01 

12-year 0.05   

13-year 0.04   

14-year 0.03   

15-year 0.02   

All yearly aggregations 0.78 0.06 0.16 
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Fig. S1. Comparisons between observed bloom area [km2] and linear models based only 
on (A) the April-July DRP loading term and (B) the truncated 9-year cumulative DRP 
loading term in Eqn. 2. Dashed line represents bloom areas used in sensitivity test. 

 

 

Fig. S2. Contributions to predicted bloom area from April-July discharge, 9-year 
cumulative DRP loading and intercept term fit to observed bloom areas. Dashed line 
represents bloom areas used in sensitivity test. 
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Fig. S3: Maximum bloom extent for 1992 (August 4, 1992). 

 



6 

References 

Allinger, L., Reavie, E., 2013. The ecological history of Lake Erie as recorded by the 
phytoplankton community. J. Great Lakes Res. 39, 365–382. 
doi:10.1016/j.jglr.2013.06.014 

Bertani, I., Obenour, D.R., Steger, C.E., Stow, C.A., Gronewold, A.D., Scavia, D., 2016. 
Probabilistically assessing the role of nutrient loading in harmful algal bloom 
formation in western Lake Erie. J. Great Lakes Res. 42, 1184–1192. 
doi:10.1016/j.jglr.2016.04.002 

Budd, J.W., Nalepa, T.F., Fahnenstiel, G.L., Drummer, T.D., 2001. Remote sensing of 
biotic effects: zebra mussels (Dreissena polymorpha) influence on water clarity in 
Saginaw Bay, Lake Huron. Limnol. Oceanogr. 46, 213–223. 

EPA GLNPO, 2012. Great Lakes Environmental Database (GLENDA) [WWW 
Document]. URL http://www.epa.gov/greatlakes/monitoring/data_proj/glenda/ 
(accessed 2.20.10). 

Ho, J.C., Stumpf, R.P., Bridgeman, T.B., Michalak, A.M., 2017. Using Landsat to extend 
the historical record of lacustrine phytoplankton blooms: A Lake Erie case study. 
Remote Sens. Environ. 191, 273–285. 

Hsu, S.A., 1974. Experimental results of the drag-coefficient estimation for air-coast 
interfaces. Boundary-Layer Meteorol. 6, 505–507. 

NOAA NDBC, 2015. Station 45005 [WWW Document]. URL 
http://www.ndbc.noaa.gov/station_page.php?station=45005 (accessed 3.4.16). 

Raftery, A.E., Madigan, D., Hoeting, J., 1997. Bayesian model averaging for linear 
regression models. J. Am. Stat. Assoc. 92, 179–191. 
doi:10.1080/01621459.1997.10473615 

Stumpf, R.P., Johnson, L.T., Wynne, T.T., Baker, D.B., 2016. Forecasting annual 
cyanobacterial bloom biomass to inform management decisions in Lake Erie. J. 
Great Lakes Res. 42, 1174–1183. doi:10.1016/j.jglr.2016.08.006 

Vanderploeg, H. a., Liebig, J.R., Carmichael, W.W., Agy, M. a., Johengen, T.H., 
Fahnenstiel, G.L., Nalepa, T.F., 2001. Zebra mussel (Dreissena polymorpha) 
selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) 
and Lake Erie. Can. J. Fish. Aquat. Sci. 58, 1208–1221. doi:10.1139/cjfas-58-6-
1208 

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Dyble, J., 2010. Characterizing a 
cyanobacterial bloom in Western Lake Erie using satellite imagery and 
meteorological data. Limnol. Oceanogr. 55, 2025–2036. 
doi:10.4319/lo.2010.55.5.2025 

Yadav, V., Mueller, K.L., Dragoni, D., Michalak, A.M., 2010. A geostatistical synthesis 
study of factors affecting gross primary productivity in various ecosystems of North 
America. Biogeosciences 7, 2655–2671. doi:10.5194/bg-7-2655-2010 


	Electronic Supplementary Material
	Appendix S1.
	Additional ancillary data
	Impact of dreissenids and other potential explanatory factors

	References

