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Harmful algal blooms in Lake Erie have been increasing in severity over the past two decades, prompting new
phosphorus loading target recommendations. We explore long-term drivers of phytoplankton blooms by
leveraging new estimates of historical bloom extent from Landsat 5 covering 1984–2001 together with existing
data covering 2002–2015. We find that a linear combination of springtime and long-term cumulative dissolved
reactive phosphorus (DRP) loading explains a high proportion of interannual variability in maximum summer-
time bloom extent for 1984–2015 (R2 = 0.75). This finding suggests that the impacts of internal loading are po-
tentially greater than previously understood, and that the hypothesized recent increased susceptibility to blooms
may be attributable to high decadal-scale cumulative loading. Based on this combined loading model, achieving
mildbloom conditions in Lake Erie (defined in recent studies as bloomareas below600 km2 nine years out of ten)
would requireDRP loads to be reduced by58% relative to the 2001–2015 average (equivalent to annual DRP load-
ing of 240 MT and April to July DRP loading of 78MT). Reaping the full benefits of load reductionsmay therefore
take up to a decade due to the effects of historical loading.
© 2017 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Water quality has declined in Lake Erie's eutrophic western basin
over the past two decades (Kane et al., 2014), characterized by an in-
creasing severity in summertime harmful algal blooms and extent of
hypoxic areas. This decline has prompted the revision of targets for
spring total and dissolved reactive phosphorus loading in Annex 4 of
the Great Lakes Water Quality Agreement (GLWQA, 2015, 2012). The
revisions were based on results from a multi-model effort at explaining
observed bloom severity (Scavia et al., 2016).

Despite relatively robust agreement among models about loading
targets, there is ongoing disagreement about the underlying processes
controlling bloom severity and the implications for system response.
One question is whether the lake is becoming more susceptible to large
blooms for a given amount of phosphorus loading (Obenour et al.,
2014; Scavia et al., 2016), and, if so, how the underlyingmechanisms im-
pact the loading reductions necessary for, and the timescales associated
with, system restoration. For example, internal phosphorus loading has
recently been suggested as a possible factor in explaining bloom severity
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(Matisoff et al., 2016; Watson et al., 2016). As discussed in Scavia et al.
(2016), additional potential factors include meteorological conditions
(Michalak et al., 2013), the influence of dreissenid mussels on grazing/
phosphorus recycling (Vanderploeg et al., 2001), internal loading of
cyanobacteria cell inocula (Rinta-Kanto et al., 2009), co-limitation of ni-
trogen (Chaffin et al., 2013), and changes in the bioavailable fraction of
the phosphorus load (Baker et al., 2014).

Several studies have pointed to the lack of long-term historical data
on bloom severity as a limiting factor in improving understanding of un-
derlying processes (Bertani et al., 2016; Ho andMichalak, 2015; Stumpf
et al., 2016).Models used to inform recent targets for loading reductions
are based on remote sensing and in situ data for 2002 to 2015 (Bertani
et al., 2016; Stumpf et al., 2016; Verhamme et al., 2016). Processes oper-
ating on longer-term time scales (e.g., climate change impacts or the ef-
fects of internal loading) are especially difficult to probe without a
longer period of record.

Here, we leverage historical data on phytoplankton bloom extent
from Landsat 5 covering 1984–2011 (Ho et al., 2017) to supplement
existing data from theMEdium andModerate Resolution Imaging Spec-
trometers (MERIS and MODIS, respectively) covering 2002–2015 (ESA,
2016; NASA, 2016), in order to explore factors explaining the long-term
variability in Lake Erie phytoplankton blooms. We also present implica-
tions for required loading reductions and anticipated timescales for sys-
tem recovery.
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Methods

Long-term bloom records

We explore a long-term historical record of maximum summertime
bloom extents for 1984 to 2015, combining remotely-sensed estimates
from Landsat 5 (1984–2011), MERIS (2002−2011), andMODIS (2012–
2015) (Ho et al., 2017; Stumpf et al., 2016, 2012; Wynne et al., 2008).
The Landsat andMERIS/MODIS estimates are expected to be compatible
based on an analysis of the overlapping 2002–2011 period (Ho et al.,
2017).

We define a composite time series based on Landsat for 1984–2009
and 2011, MERIS for 2010, and MODIS for 2012–2015 (Fig. 1 and solid
line in Fig. 2). We rely on Landsat for the period overlapping with
MERIS (2002–2011) to maximize coherence with the longer preceding
period (1984–2001). The exception is for 2010, when clouds obscured
Landsat scenes during peak bloomactivity (Ho et al., 2017). A sensitivity
analysis using MERIS for 2002–2005 and 2007–2011, and Landsat for
1987–2001 and 2006 (dashed line in Fig. 2) yielded consistent conclu-
sions. Landsat was used for 2006 in the sensitivity analysis due to data
gaps inMERIS during peak bloom activity that year (see Ho et al., 2017).

Ancillary data

Observations of maximum summertime bloom extent are analyzed
using discharge and phosphorus loading measurements from the Mau-
mee River, the main tributary driving bloom severity for Lake Erie
(Scavia et al., 2016). Daily total phosphorus (TP) and dissolved reactive
phosphorus (DRP) concentration data are available from theHeidelberg
University National Center for Water Quality Research (Heidelberg
University NCWQR, 2015; Stow et al., 2015). Daily mean discharge
data are available from the USGS Station at Waterville, Ohio (USGS,
2016). Total monthly loads are estimated by multiplying discharge
with TP or DRP concentration and summing daily loads. Missing con-
centration data are imputed by taking the average of the closest
10 days of data, similar to Obenour et al. (2014).

Because recent studies have suggested that total bioavailable phos-
phorus (TBP) may be the strongest predictor of bloom severity (Bertani
et al., 2016; Stumpf et al., 2016), we also calculate TBP as:

TBP ¼ DRPþ θ TP−DRPð Þ ð1Þ

where (TP−DRP) represents the particulate form of phosphorus (under
the assumption that all dissolved phosphorus is reactive), and θ is the
fraction of particulate phosphorus that is bioavailable. DRP is assumed
to be 100% bioavailable (Baker et al., 2014). Two values of θ, 0.138 and
Fig. 1. Historical record of maximum summertime bloom extents from La
0.63, have been proposed in the literature and are considered here. The
first is based on θ= β(1− S), where β=0.23 is the bioavailable fraction
of particulate phosphorus and S = 0.4 is the fraction that settles out of
the water (Stumpf et al., 2016). The second is estimated using a Bayesian
hierarchical model of bloom severity that also includes several other
parameters (Bertani et al., 2016).

Model development, comparison, and projection

We use multiple linear regression to model maximum summertime
bloom extent as a function of TP, DRP, TBP, and/or discharge aggregated
to different timescales. We limit the linear models to at most two pre-
dictors to focus only on the most parsimonious models and to avoid
the possibility of over-fitting. We also perform leave-one-out cross-
validation to assess model robustness (e.g., Chatfield, 2006; Obenour
et al., 2014).

We consider all possible aggregations of discharge, TP, DRP, and TBP
over consecutive months from January to September; we include a very
broad range of months in the interest of being conservative. Given re-
cent suggestions in the literature that internal loading may be a factor
in driving bloom severity (e.g., Matisoff et al., 2016),we also include sin-
gle andmultiple water year aggregations of TP, DRP, TBP, and discharge,
ranging from only the current water year and going back up to 20 years
total. For two-predictor models (i.e. ones that include bothmonthly and
yearly aggregations) we truncate the cumulative loading term for the
current water year such that the same month does not appear in both
terms. Because regularmonitoring of phosphorus loading from theMau-
mee River began in 1975 and the bloom extent observations begin in
1984, for cumulative loading exceeding 10 years we assume that any
missing years have loading equal to the average over the available
years preceding a given bloom year. Additional sensitivity and robust-
ness checks are described in the Results, Discussion, and Electronic Sup-
plementary Material (ESM) Appendix S1.

For comparison, we also implement two existing models that have
been used to guide nutrient load targets, namely the U-M/GLERLWest-
ern Lake Erie HAB model (Bertani et al., 2016; henceforth U-M/GLERL
model for brevity) and the NOAA Western Lake Erie HAB model
(Stumpf et al., 2016; henceforth NOAA model for brevity). For the U-
M/GLERL model, we use the posterior means for the six parameters re-
quired by the model as listed in Bertani et al. (2016), which were cali-
brated using data for 2002–2014. The model is based on monthly TBP
loading for February through June (with February receiving a lower
weight than March–June) and on calendar year for modeling the long-
term trend. For the NOAA model, we use published coefficients for
March–July TBP loading, and weigh July twice as much as March–June
but only include it for years with warm Junes, for consistency with
ndsat (1984–2011), MERIS (2002–2011), and MODIS (2012–2015).



Fig. 2. (A) Contributions to predicted bloom area fromApril–JulyDRP, 9-year cumulative DRP and intercept term based on Eq. (2)fit to observed bloomareas. (B, C) Comparisons between
observed bloom area [km2] and (B) bloom size [MT] from the U-M/GLERLWestern Lake Erie HABmodel (Bertani et al., 2016) and (C) Cyanobacterial Index from the NOAAWestern Lake
Erie HAB model (Stumpf et al., 2016). Dashed line represents bloom areas used in sensitivity test.
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Stumpf et al. (2016).We implement the temperature threshold for defin-
ing “warm” Junes using buoy water temperatures from National Data
Buoy Center Station 45005 (NOAANDBC, 2015) due to lack of availability
of MODIS-based data prior to 1999, and use a threshold of 18.6 °C for
“warm” to classify June temperatures equivalently to Stumpf et al. (2016).

Results

Comparison with historical bloom literature

Thenewestimates of historicalmaximumsummertime bloomextent
for 1984–2001 are generally consistentwith past qualitative information
from phytoplankton surveys on species abundance and distribution
(Table 1). The decline in bloom area in the late 1980s and early 1990s
Table 1
Summary of historical information about phytoplankton blooms in Lake Erie for 1984–2015. Me
estimates in Fig. 1.

Time period Historical observations from p

1984–1987 Diatoms and chlorophytes (a.k.a. green algae) dominant (Makarewicz, 1
Summer diatoms present with a mixture of phytoplankton types (Muna

1988–1992 Significant decreases in total phytoplankton biomass and chl-a (Leach, 1
Nicholls and Hopkins, 1993)
Increase in algae inedible to zooplankton (Wu and Culver, 1991)
Increase in chrysophyte (a.k.a. golden algae) biomass (Dahl et al., 1995)
Transition to chlorophyte dominance (Munawar and Munawar, 1999)

1993–1996 Transition from summer chlorophyte dominance (Munawar et al., 2002)
Microcystis begin to appear in high concentrations (Brittain et al., 2000)
10–34% less chl-a in 1994–1996 than 1984–1986 (Charlton et al., 1999)

1997–2000 Phytoplankton biomass data suggests 1998–2002 blooms were compara
1998 phytoplankton biomass comparable to 1983–1988 means (Barbier

2001–2015 High biomass blooms with large year-to-year variability dominated by M
Stumpf et al., 2012; Wynne and Stumpf, 2015)
Record-setting blooms occurring in 2011 and 2015 (Michalak et al., 2013
coincides with a reduction in algal biomass and a concomitant transition
from diatom-dominated blooms to sparser phytoplankton assemblages
dominated by green algae. As bloom areas increase starting at the end
of the 1990s and early-2000s, another transition occurs, this time from
green algae dominance to blue-green algae dominance, along with in-
creases in biomass. Overall, the Landsat record concurs with the existing
literature on trends in historical phytoplankton abundance in Lake Erie
across changes in the dominant phytoplankton species.

Long-term trends and drivers

We find that springtime DRP loading and long-term cumulative
loading alone explain both recent (2001–2015) and historical (1984–
2000) variability in maximum summertime phytoplankton bloom
an bloom size and standard deviation of interannual variability are based on summertime

hytoplankton surveys Mean bloom
size ± standard
deviation [km2]

993)
war and Munawar, 1999)

580 ± 250

993; Makarewicz, 1993; Munawar and Munawar, 1999;

to Microcystis cyanobacteria dominance (Charlton et al., 1999) 340 ± 110

ble to those in 1983–1989 (Conroy et al., 2005)
o and Tuchman, 2001; Makarewicz et al., 1999)

icrocystis cyanobacteria (Bridgeman et al., 2013;

; Stumpf et al., 2016)

960 ± 540
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extent in Lake Erie (Fig. 2A). A linear combination of only April to July
DRP loading (in metric tons [MT]) and cumulative DRP loading over
nine water years (truncated at the end of March of the modeled year,
see Methods) [MT] from the Maumee river together explain 75% of
the variability in the maximum observed bloom area, A [km2], over
the full period of record (1984–2015):

A ¼ 2:70 � DRPApr−Jul þ 0:208 � DRP9−year−386 ð2Þ

and explains 78% of the variability over the recent period (2001–2015)
(Table 2). Adding the 9-year cumulative DRP variable to the April–July
DRP loading yields a highly significant improvement in explanatory
power (p = 1.14 × 10−5, based on a standard F-test). The leave-one-
out cross validation further supports the model's robustness, with the
model explaining 70% of the variability in the left-out observations. Al-
though March to July DRP has the highest explanatory power as a single
variable (r2 = 0.53), two-variable models that include this variable ex-
plain at most 69% of the variability.

An analysis comparing all possible combinations of two variables
suggests that the combination of springtime loading and decadal-scale
cumulative loading is very robust in explaining interannual variability
in bloom extent, but that the available data record cannot fully distin-
guish between the relative value of DRP vs. TBP (based on θ = 0.138)
vs. discharge (ESM Table S1). For example, the two models with the
highest explanatory power overall are based on April to July discharge
and 9-year and 10-year cumulative DRP loading, respectively (ESM
Fig. S2, Table 2), and explain 77% and 76% of the overall variability, re-
spectively. The model in Eq. (2) has the highest explanatory power
Table 2
Coefficient of determination (R2) for selectedmodels and time
current (2001–2015) periods is selected based on the maximu
bloom size between periods. Shading is used to denote significa
ing indicating p b 0.001; light grey 0.001 b p b 0.05; and white p
termination, the number of observations in each period, and th
two for the linear models, one for the individual terms, and th

Predictor

All years

Linear model with April–July DRP and 9-year DRP 

April–July DRP loading term 

9–Year cumulative DRP loading term 

U–M/GLERL model (Bertani et al., 2016)

NOAA model (Stumpf et al., 2016)  

Linear model with April–July discharge and 9-year DRP

Outliers removed

Linear model with April–July DRP and 9-year DRP

April–July DRP loading term 

9-Year cumulative DRP loading term 

U–M/GLERL model (Bertani et al., 2016) 

NOAA model (Stumpf et al., 2016)  

Linear model with April–July discharge and 9-year DRP

* For 1984–2001, the U-M/GLERL model defaults to th
of whether we assume that the temporal trend continues 
among models relying only on loading, making it more appropriate for
considering management implications. Overall, the preponderance of
the evidence across all two-variable models (ESM Table S1) points to
springtime DRP loading (probability of 36%) or discharge (probability
of 54%), together with long-term DRP loading (probability of 78%) as
the best explanatory factors, based on Bayesian model averaging
(Raftery et al., 1997). The presence of dreissenids and high turbidity
are unlikely to be major confounding factors (see ESM Appendix S1).
In addition, neither springtime nor long-term TP loading, or TBP calcu-
lated using θ=0.63, provide comparable explanatory power relative to
the other variables considered. The lower explanatory power of TBP
(calculated using either value of θ) could indicate changes in the histor-
ical bioavailable proportion of total phosphorus; that is, the bioavailable
fractions used to estimate TBP may not apply historically.

The proposed model is also more robust and parsimonious relative
to existingmodels. Whereas the U-M/GLERL and NOAAmodels provide
comparable explanatory power over the current period (on which their
development was based), they are less robust to the removal of outliers
in 1992, 2011, and 2015, and cannot explain observed variability during
the historical period (Table 2; Fig. 2). In addition, while the proposed
model relies on two predictors (i.e. input variables), the NOAA model
(June temperature, March to June TBP loading, July TBP loading) and
U-M/GLERL model (February TBP loading, March to June TBP loading,
and year) both require three. The U-M/GLERLmodel also relies on a rel-
atively large number of parameters (i.e., six), while certain choices in
the NOAA model are difficult to assess, such as the threshold defining
a “warm” June and the assumption of a log-base-10 relationship be-
tween loading and bloom severity.
periods. The division between historical (1984–2000) and
m observed difference in mean and standard deviation of
nce level based on a standard F-test, with dark grey shad-
N 0.05. The F-test takes into account the coefficient of de-
e number of predictor variables for each model, which is

ree for the U-M/GLERL and NOAA models (see Methods).

Whole
period

(1984–2015)

Historical
period

(1984–2000)

Current
period

(2001–2015)

AllAllAll

0.75 0.24 0.78

0.50 0.02 0.59

0.43 0.24 0.30

0.72 N/A* 0.74

0.56 0.04 0.70

0.77 0.26 0.84

Removing
‘92, ‘11, ‘15

Removing
‘92

Removing
‘11, ‘15

0.71 0.78 0.62

0.24 0.04 0.30

0.49 0.75 0.24

0.55 N/A* 0.50

0.28 0.00 0.40

0.71 0.78 0.67

e background bloom size (7910 MT), irrespective
prior to 2002.
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Discussion

Case studies of individual blooms

The expanded bloom record and themodel in Eq. (2) provide new in-
sight into the relative size of blooms in 1984–1987. Previous vessel-
based, lake-wide data had suggested that the 1986 bloomwas the largest
over 1983–1987 (Makarewicz, 1993), while other surface chl-a observa-
tions (ESM Appendix S1) in 1986 and 1987 had implied that these two
years experienced similar blooms (EPA GLNPO, 2012). The Landsat
data instead suggest that the 1984 bloom was slightly larger than the
1986 bloom, which was in turn larger than the 1987 bloom (Fig. 1).
This ranking is also supported by the model (Fig. 2A), given the higher
spring and cumulative loading in 1984 relative to 1986, which in turn
are higher than in 1987. Together, the Landsat record and the loading-
based model indicate a gradual improvement in bloom conditions in
the late 1980s.

The large outlier bloom observed in 1992 is inconsistent with both
themodel in Eq. (2) andwith other existingmodels, all of which predict
a much smaller bloom than observed (Fig. 2, ESM Figs. S1, S2). We hy-
pothesize that the larger observed spatial extent was driven by record
wind stress (0.052 Pa in July and August versus the 1984–2015 July
and August mean of 0.040 Pa) and abnormal patterns in wind direction
(record-low percentage of days with northerly winds (9.6%) and the
second-highest percentage of days with southwesterly wind (30%))
(ESM Appendix S1). The 1992 bloom extended north along thewestern
shore (ESM Fig. S3), which further supports this hypothesis as the ob-
servedwind patternswould have favoredmoving phosphorus and phy-
toplankton up the western shore.

The expanded bloom record and themodel also alter understanding
of the 1995 bloom, previously assumed to be the first “large” bloom of
the current Microcystis-dominated regime (Budd et al., 2001). Budd
et al. (2001) had previously estimated the area of the bloom to be ap-
proximately 1000 km2. However, the Landsat observations suggest a
bloom of only 300 km2, implying that the remainder of the bloom was
less intense than the smallest Microcystis blooms of 2002–2011 on
which the bloom classification threshold was developed (Ho et al.,
2017). This interpretation is also consistent with the Eq. (2) model, be-
cause both springtime and cumulative loading were lower in 1995 rel-
ative to the post-2002 period (Fig. 2A).

The cumulative loading term also helps to explain observed bloom
severity in 1985, 1988, 1994, and 2012 (Fig. 2A), years during which
spring loading was minimal. In 2012 for example, April–July DRP load-
ing was only 8 MT, the lowest over the whole study period, and yet a
small bloom occurred. The area of the bloom is entirely consistent
with the anticipated impact of cumulative loading (Fig. 2A), supporting
the speculation by Matisoff et al. (2016) that the bloom was supported
by internal loading. This finding also explains why the NOAA model,
which relies solely on spring loading, underestimated bloom size for
2012 (Stumpf et al., 2016). Similarly, decreasing bloom extents in
1985, 1988, and 1994 (560, 536, and 282 km2, respectively) are consis-
tent with declining cumulative loading over that period (Fig. 2A). Cu-
mulative loading, representative of long-term trends, thus explains
bloom severity in low-loading years, which is consistent with the idea
that the cumulative loading term is representative of internal phospho-
rus loading in the western basin of Lake Erie.

Effects of long-term phosphorus loading

Overall, our findings are consistent with the idea that internal phos-
phorus loading in Lake Erie is likely more important than previously con-
sidered, andmay occur on timescales of up to a decade. This conclusion is
consistent with observations in other lakes that have undergone reduc-
tions in inflows of nutrients (e.g., Lake Lugano: Lepori and Roberts,
2017), and implies that ecosystem recovery could be slow. For Lake Erie
specifically, the importance of internal phosphorus loading was first
investigated in response to events in 2012, when a drought resulted in
minimal springtime phosphorus loading and yet a small bloom occurred
(Matisoff et al., 2016). Measurements of internal phosphorus loading
have suggested that internal diffusive loading is unlikely to trigger blooms
by itself, but is sufficiently large to contribute to blooms (Matisoff et al.,
2016). Our results suggest that in certain years (e.g., 2012, 1994, 1988,
1985) internal loading may be sufficient to support observed blooms al-
most entirely.

The timescales over which cumulative loading is observed to impact
interannual variability in summertime bloom extent (Eq. (2); ESM
Table S1) are substantially longer than has previously been assessed
quantitatively for Lake Erie, but are consistent with speculation that in-
ternal phosphorus effects could delay the recovery of Lake Erie by 10–
15 years (Watson et al., 2016). As discussed inWatson et al. (2016), re-
sidual phosphorus has been shown to delay recoveries in other lakes up
to 15 years (Jeppesen et al., 2007; Phillips et al., 2005). There is also ev-
idence for a potential reservoir of historical phosphorus for internal
loading in Lake Erie sediments, with past estimates suggesting that
92% of the external phosphorus entering Lake Erie is retained (Burns,
1976), a finding supported bymodeling studies showing a net accumu-
lation of phosphorus in Lake Erie sediments (Zhang et al., 2016). Results
from Lake Simcoe also showed that both long-term and short-term
phosphorus can be released from sediments (Dittrich et al., 2013), sug-
gesting that internal loading is not always made up of recently-
deposited phosphorus, and thereby supporting the idea of a long-term
impact of historical phosphorus.

During the historical period (1984–2000), bloom severity in fact pri-
marily follows the long-term trend represented by the cumulative load-
ing term, and cumulative DRP loading alone can explain 75% of the
variability in historical bloom size after the removal of the outlier in
1992 (ESM Fig. S1B; Table 2). This finding is attributable to much
lower year-to-year variability in spring loading during the historical pe-
riod, somuch so that springtimeDRP loadingdoes not providemuch ad-
ditional explanatory power historically (ESM Fig. S1A; Table 2). More
broadly, this explains why the NOAA model, which is based primarily
on spring loading, does not perform well during the historical period
(Fig. 2C; Table 2), and suggests that models based primarily on spring-
time loading may underestimate the time required to reap the benefits
of future loading reductions.

For the recent period (2001–2015), during which the interannual
variability (expressed as variance) in springtime DRP loading is 7-fold
higher than during the historical period, springtime DRP loading alone
explains 59% of the variability in maximum summertime bloom extent,
while the cumulative DRP loading term alone explains 30% (ESMFig. S1;
Table 2). Together they explain 78% of the variability, indicating that
both spring and historical loading are needed to explain the interannual
variability for recent blooms (ESM Fig. S1; Table 2). The influence of the
increase in cumulative loading over this period (Fig. 2A) can also explain
the “increased susceptibility” of Lake Erie to large blooms for a given
amount of springtime loading noted in recent studies (Bertani et al.,
2016; Obenour et al., 2014).

The evidence for long-term DRP or TBP (rather than TP) loading
explaining bloom severity also suggests that biological mechanisms
may drive the sedimentation of phosphorus available for internal load-
ing, i.e., that biologically-assimilated-P is the primary form that is accu-
mulated for internal recycling, rather than less labile particulate-P. DRP
and TBP enter bed sediments primarily through sequestration into the
foodweb (Sharpley et al., 2014), and settling particles and the sediment
surface can act as sinks for DRP (Gächter and Mares, 1985; Williams,
1998). In the Northern Gulf of Mexico, reports of up to half of phyto-
plankton biomass sinking into sediment traps (Dortch 1997) suggest
that phytoplankton sedimentation can be a major source of sediment
nutrients. Given the timescale of historical loading effects observed
here, phosphorus in Lake Erie could also be bound in sediment forms
that are less labile, which might favor release over multiple years
(e.g., see Sondergaard et al., 2003).



Fig. 3. (A) Predicted bloom areas based on (B) April–July DRP and (C) 9-year cumulative DRP using Eq. (2) for historical data and future loading scenarios. Dashed lines in panel (A) show
10th and 90th percentiles of the predictive uncertainty for bloom size. Filled circles in panel (A) indicate the two years (2004 and 2012) that are used to set the target for “mild bloom
conditions,” similar to Scavia et al. (2016).
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Implications for nutrient load reduction targets

Based on the model presented in Eq. (2), we find that achieving the
target laid out in GLWQA (2015), namely summertime blooms being
below 2004 and 2012 bloom conditions (“mild bloom conditions”
defined similarly as Scavia et al. (2016), interpreted as the average of
those years' maximum bloom extents, or 600 km2) for nine years out
of 10, would require annual DRP loading to be reduced to 240 MT and
April to July loading to be reduced to 78 MT (Fig. 3; Table 3). This is
equivalent to a March to July loading of 112 MT, a stricter target relative
to the 186 MT listed in GLWQA (2015). Discounting 1992 as an outlier
leads to a slightly less stringent annual target of 280 MT, equivalent to
91 MT for April to July and 130 MT for March to July (Table 3). This
projection assumes the same percentage reduction to both spring and
annual loads relative to the average seasonal cycle for 2001–2015
(Table 3). We use the 90th percentile of the predictive uncertainty for
bloom size as the metric for meeting future bloom size targets nine
year out of ten.
Table 3
Loading targets based on modeled projections compared to GLWQA (2015) recommended tar

Annual

Targets based on loading model 240a

Targets based on loading model recalibrated after excluding 1992 bloom 280a

GLWQA (2015) recommended target —
2008 loadingd 837
2001–2015 average loading 564

a Determined based on the 90th percentile of predicted bloom size estimated from loading
b Calculated assuming the same percentage reduction from 2001 to 2015 as the April–July an

model (Eq. (2)) but is calculated here for comparison to the GLWQA (2015) target.
c As reported in GLWQA (2015).
d Baseline for GLWQA (2015) targets.
If the DRP reductions were implemented immediately, the target
would be achieved after a decade due to the effect of historical phospho-
rus; if the reductionwere implemented gradually over 10 years, the tar-
get would be achieved only after close to two decades (Fig. 3). This
anticipated delay in reaping the benefits of loading reductions is consis-
tent with Lake Erie's observed recovery in the 1970s and 1980s (when
TP was reduced by 50%) and also with recovery times in other lakes
with residual phosphorus effects (Jeppesen et al., 2007; Phillips et al.,
2005;Watson et al., 2016). These findings illustrate thatwhile summer-
time blooms are likely to respond immediately to spring loading reduc-
tions, historical phosphorus loading effects could prevent the full
realization of the benefits resulting from those reductions for a decade
or more (Fig. 3).

The required targets are stricter than the GLWQA (2015) recommen-
dations recently reported by Scavia et al. (2016). Applying equivalent re-
ductions as GLWQA (2015) under the same seasonality assumptions as
before (Table 3) would not return Lake Erie to mild bloom conditions
using the model in Eq. (2) (Fig. 3). Instead, these reductions would
gets.

DRP load [MT] April–July DRP load [MT] March–July DRP load [MT]

78a 112b

91a 130b

— 186c

158 303
183 263

model (Eq. (2)).
d Annual DRP load targets. Note thatMarch–July DRP loading is not included in the loading
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lead to bloom sizes below 1000 km2 nine years out of 10, similar to the
2006, 2009, and 2014 blooms rather than the 2004 and 2012 blooms.

Conclusion

In summary, we find that a linear combination of springtime and
long-term cumulativeDRP loading explains three quarters of interannual
variability in maximum summertime phytoplankton bloom area in Lake
Erie for 1984–2015 (R2 = 0.75). Based on available data, we also do not
find evidence of TP explaining bloomseverity beyond its correlationwith
DRP. These results suggest that residual phosphorus effects in Lake Erie
are likely more important than previously suspected, which would
delay recovery following phosphorus load reductions. Results also sug-
gest that achieving mild bloom conditions would require annual DRP
loads to be reduced to 240MT (April to July loads of 78MT), a 58% reduc-
tion relative to the 2001–2015 average. Full recovery would only be
achieved up to a decade after reductions targets are reached.
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