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ABSTRACT We develop the first spatially inte-
grated economic-hydrologic model of the west-
ern Lake Erie basin explicitly linking economic
models of farmers’ field-level best management
practice (BMP) adoption choices with the Soil
and Water Assessment Tool to evaluate nutri-
ent management policy cost-effectiveness. We
quantify trade-offs among phosphorus reduction
policies and find that a hybrid policy coupling a
fertilizer tax with cost-share payments for sub-
surface placement is the most cost-effective and
can achieve the policy goal of 40% reduction in
nutrient loadings. We also find economic adop-
tion models alone can overstate the potential for
BMPs to reduce nutrient loadings by ignoring
biophysical complexities. (JEL Q18, Q53)

1. Introduction

Agricultural nutrient runoff, especially phos-
phorus (P), from the Maumee River water-
shed in the western Lake Erie basin has led
to frequent and severe water quality crises,
including harmful algal blooms (HABs) and
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hypoxia in Lake Erie and the 2014 Toledo
water crisis (Lake Erie LaMP 2011; Scavia
et al. 2014; Stumpf et al. 2012). To address
these growing concerns, the United States and
Canada adopted a revised version of the Great
Lakes Water Quality Agreement (GLWQA)
in 2012, which aims to reduce total phospho-
rus (TP) and dissolved reactive phosphorus
(DRP) entering affected areas of Lake Erie
by 40% relative to the 2008 loading levels
(Binational.net 2012). At the national level,
spending on federally funded conservation
programs is projected to be over $5.5 bil-
lion annually, or about $15 per acre per year,
during the five-year life of the 2014 Farm Bill.
At the state level, Ohio’s Senate Bill 1, signed
in early 2015, requires nutrient management
plans for all producers, prohibits manure or
fertilizer application on frozen ground and 24
hours before a forecasted storm, and encour-
ages injecting or incorporating fertilizer or
manure application into the ground. Despite
these efforts, the 2015 Lake Erie HAB was
even larger and more severe than the HAB re-
corded in 2011 (Stumpf et al. 2016), and the
issue continues to be at the forefront of en-
vironmental and agricultural policy issues for
the Great Lakes region.

A key feature of federal and state programs
is that they are often voluntary, with produc-
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ers opting to participate receiving a cost-share
payment covering part or all of the best man-
agement effort. Despite their prevalence, there
is a significant lack of empirical evidence of
the cost-effectiveness of these cost-share pro-
grams in terms of their downstream impacts
(Garnache et al. 2016). While these incentives
have effectively encouraged farmer adoption
of best management practices (BMPs), it is
unknown if they are economically cost-effi-
cient, which would greatly depend on the ex-
tent to which these land management changes
are successful in reducing nutrient loadings
and improving water quality benefits.

This article fills a critical policy evaluation
gap by developing a spatially integrated eco-
nomic-hydrologic model that explicitly links
individual land management decisions by het-
erogeneous farmers on heterogeneous fields
with a hydrologic process model to evaluate
the cost-effectiveness of various nutrient man-
agement policies. Specifically, we link farm-
er-survey-based economic models of BMP
adoption with the widely used hydrologic-pro-
cess-based Soil and Water Assessment Tool
(SWAT) model. The economic models include
an ordered logit model that explains how BMP
adoption costs and cost-share payment subsi-
dies drive changes in adoption behavior, and
a fertilizer demand model to analyze and pre-
dict farmers’ fertilizer application rate deci-
sions under fertilizer taxes. Our SWAT model
incorporates BMP decisions, geophysical data
such as soil type, and climate information as
inputs to assess the effectiveness of different
policy scenarios in reducing nutrient runoff
at the watershed scale. With this integrated
economic-hydrologic model, we are able not
only to quantify the changes in conservation
practice adoption on an individual field scale
in response to policy incentives, but also to
simulate the resulting impacts from the water-
shed on water quality changes, specifically TP
and DRP loadings.

We apply this model to the biggest Great
Lakes watershed—the Maumee River wa-
tershed—to quantify the trade-off between P
reduction and policy costs for a range of al-
ternative policies and to investigate which of
these policies has the potential to reach the
policy target of a 40% reduction in P loadings
to Lake Erie. The Maumee watershed is the

largest source of P loadings into Lake FErie
and the primary driver of the extent of Lake
Erie HABs (Maccoux et al. 2016; Scavia et al.
2014). Using a 2014 survey of 2,324 respon-
dents of farmers from this watershed that pro-
vides extensive information on farmers’ BMP
choices, field characteristics, and demograph-
ics (Burnett et al. 2015), we examine three
salient in-field conservation practices—sub-
surface fertilizer placement (via banding or
in-furrow with seed), post-fall-harvest cover
crops, and P fertilizer application rate reduc-
tion—all of which have been shown to be crit-
ical and promising in reducing nutrient runoff
(Wilson et al. 2019; Gildow et al. 2016; Scavia
et al. 2014). Our integrated model allows us
to assess the cost-effectiveness of cost-share
payments that are currently in place under a
range of possible payment amounts, as well as
three hypothetical policies: (1) a fertilizer tax,
which ranges in magnitude from 0% to 400%
of the producer-specific P fertilizer price; (2) a
spatially targeted zonal policy that only offers
cost-share payments only to farmers in the
nutrient runoff “hotspot” counties; and, (3) a
revenue-neutral hybrid policy that administers
a fertilizer tax and then redistributes those rev-
enues to producers in the form of cost-share
payments for adoption of subsurface place-
ment or cover crops.

The main results show that either a substan-
tial increase in fertilizer costs through a tax, or
a hybrid approach that combines a somewhat
lower fertilizer tax with cost-share incentives
for subsurface placement can meet this policy
target. Specifically, we find that a 400% fer-
tilizer tax on the producer-specific P fertilizer
price can generate a 39.5% reduction in TP,
while a 200% fertilizer tax that is recycled for
cost-share payments for subsurface placement
can lead to 40.5% reduction in TP.! In compar-
ison, a very ambitious cost-share program of
$80 per acre uniformly offered to all farmers
reduces DRP loadings by 13% and TP load-

1 Based on results from previous literature, we assume that
policy costs are a function of program size. Specifically, the
costs of implementing the fertilizer tax are set at 7% of the
total tax revenues generated ($14 million in the case of a
400% tax) and 10% for implementing the hybrid policy ($17
million in the case of a 200% tax). The latter is due to the
added coordination that is necessary for redistributing the
cost-share payments.
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ings by 8% and imposes $188 million in an-
nual policy costs. In comparison, farmers in
Ohio received about $36 million in cost-share
payments from the U.S. Department of Ag-
riculture’s Environmental Quality Incentives
Program in 2018 (USDA NRCS 2018). Based
on the model scenarios and results considered
here, this outlay could at best generate less than
5% P loading reduction even if used exclu-
sively for incentivizing subsurface placement.

Another key result of our study is that
subsurface placement of fertilizer is a more
effective BMP than cover crops in terms of
reducing P loading. More importantly, look-
ing at the cost-share payment programs, de-
spite significantly higher adoption of the tar-
geted BMPs under various policy scenarios,
the resulting watershed-scale reduction in P
loadings at best accounts for less than half of
the prescribed 40% nutrient reduction goal.
For example, we find that, while the $80 per
acre uniform cost-share payment for farmers
to adopt subsurface placement would increase
the total cropland acres in the watershed from
46% to 65%, the corresponding percentage
reduction in nutrient loadings is much less—
13% and 8% in DRP and TP loadings, respec-
tively. Even with the spatially targeted pay-
ment that targets the runoff hotspot counties,
which is more cost-effective than the uniform
cost-share payments, we observe a similar re-
duction at a slightly lower total cost. The lack
of responsiveness in water quality could be a
result of the hydrologic and biophysical com-
plexities, including legacy P attached to soils
and hydrologic routing within the watershed.
Thus, more innovative policies that provide
alternative approaches to reduce nutrient run-
off are needed.

By integrating both the economic and
biophysical systems in a spatially explicit
framework that also accounts for individual
decision-making, this work makes novel con-
tributions and extends the literature in multiple
ways. A substantial literature examines farm-
ers’ adoption of BMPs and the role of mone-
tary incentives (e.g., Blackstock et al. 2010),
adoption costs (e.g., Sheriff 2005; Kurkalova,
Kling, and Zhao 2006), and farmers’ socio-
economic and sociopsychological character-
istics (e.g., Norris and Batie 1987; Zhang et
al. 2016; Burnett et al. 2015; Wu et al. 2004).
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However, these studies focus on individual
decision-making and most do not explicitly
consider downstream water quality impacts
and, thus, are unable to fully evaluate policy
effectiveness. On the other hand, a growing
number of hydrologic process-based models
have been developed for Lake Erie and other
areas of the Great Lakes region; however,
these models omit behavioral or economic
considerations and therefore must impose as-
sumptions about BMP adoption (e.g., assum-
ing full or random adoption, see Scavia et al.
[2017] and Bosch et al. [2014]). We demon-
strate the value and necessity of integrated
assessment models to identify realistic policy
impacts of nutrient management policies and
quantify the social cost of water quality. We
show that ignoring biophysical complexity, as
is typical of most economics models, or im-
posing unrealistic simplified adoption behav-
ior, as is typical of most hydrologic models,
could lead to significant overestimation of the
cost-effectiveness of agri-environmental poli-
cies in reducing nutrient runoff.

In addition, by accounting for heterogeneity
in farmer decision-making in quantifying the
effectiveness of alternative economic-based
incentives and policies, our article makes
novel contributions to integrated assessment
modeling for policy analysis. Previous nu-
trient policy evaluation studies may consider
both economic costs and environmental out-
comes but are either reduced-form in nature
(e.g., Sohngen et al. 2015) or assume simpli-
fied economic adoption outcomes to focus on
geophysical or hydrologic processes in the
watershed (e.g., Laukkanen and Nauges 2014;
Rabotyagov et al. 2014). A limitation is that,
by omitting an explicit farmers’” BMP choice
model, they are unable to assess the potential
impacts of alternative policy interventions or
account for the potential differences in choice
behaviors across heterogeneous farmers. By
coupling realistic representation of farmer
BMP adoption behavior with a hydrologic
process model and translating individual
behavior changes into watershed-scale wa-
ter quality outcomes, we are able to account
for heterogeneous responses to hypothetical
policy alternatives. To the best of our knowl-
edge, this is the first integrated model of the
Lake Erie basin that captures these essential
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Figure 1

Map of the Maumee River Watershed Highlighting the per Hectare
Total Phosphorus (TP) Loading across Subbasins
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features and allows for more realistic policy
scenarios.

Finally, by demonstrating the need for and
importance of broadening the nutrient man-
agement policy toolboxes to move beyond
existing cost-share programs, the results are
important for informing water quality policy.
None of the single BMP cost-share payment
programs that we analyzed can achieve the
40% nutrient reduction target even with spa-
tial targeting. Instead, we find that a hybrid
policy, in which a tax is used to generate the
revenues to incentivize additional BMP adop-
tion policy, is far more effective than expand-
ing the existing cost-share programs—not just
because it is revenue neutral, but also because
it applies both a carrot (cost-share payments)
and a stick (higher P fertilizer costs) to incen-
tivize farmers.

2. Study Area and Data

The Maumee River watershed in the west-
ern Lake Erie basin is a HUC-6 watershed

spanning 4 million acres across three states
(northwestern Ohio, northeastern Indiana,
and southern Michigan) and is the largest
source of P loadings into Lake Erie (Scavia
et al. 2014) (Figure 1). Previous hydrologic
research shows that 85% of P loadings in this
watershed come from agricultural fertilizer
and manure application on its 10,000 crop
farms and 2,000 livestock farms (Scavia et al.
2017). As a result, agricultural nutrient man-
agement practices in this watershed are of sig-
nificant interest in improving water quality in
Lake FErie.

From February to April 2014, we con-
ducted a representative mail survey of 7,500
farmers in the western Lake Erie basin on
their field, farm, and operator characteris-
tics as part of a coupled natural-human sys-
tems project (Burnett et al. 2015; Martin et
al. 2011; Zhang et al. 2016; Zhang 2015).
We also solicited field-specific responses on
crop choices, fertilizer application, and other
BMPs for the 2013 crop year. The addresses
of all farmers in the Maumee River watershed
were provided by a private vendor compiled
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from lists of farmers receiving government
payments and from farming magazine sub-
scription rolls. The two-round survey was
conducted following Dillman’s tailored de-
sign method (Dillman 2011). The total set of
mailings included an announcement letter, a
survey packet, a reminder letter, and a replace-
ment packet for nonresponders. Respondents
received a $1 bill in the mailings as an incen-
tive to increase the response rate. The survey
was pilot tested using farmers recruited by
local extension professionals several months
before the initial mailings.

A total of 3,234 surveys were initially re-
turned, and of these returned surveys 438
were no longer farming and another 32 did not
answer the crop management questions. In to-
tal, we obtained 2,324 valid survey responses,
yielding a response rate of 37%. A compari-
son between our data and the Census of Agri-
culture data for counties in the Maumee River
watershed reveals that our sample is skewed
toward large farms with high gross sales and
farmers earning additional off-farm income.?
The average farm size is larger than that of
the 2012 Census of Agriculture for counties
in this watershed; however, larger farms have
more potential to impact the water quality in
Lake Erie (Zhang et al. 2016). A descriptive
report of this survey is presented by Burnett et
al. (2015), and Zhang (2015) and Zhang et al.
(2016) have additional descriptions.

Table 1 shows the summary statistics of
the survey, including farmers’ BMP adoption,

2While this may suggest that our sample is not statisti-
cally representative of all 18,116 farms in the Maumee River
watershed, the 2012 Census of Agriculture data also show
that over 80% of all cropland in Ohio and Indiana is located
on farms with at least 180 acres, and over half of the acreage
is on farms with at least 500 acres (U.S. Department of Agri-
culture 2014). As larger farms manage a greater relative pro-
portion of cultivated lands in the Corn Belt, they also have
a disproportionate potential to impact environmental quality
through adoption or nonadoption of conservation practices.
In fact, in the western Lake Erie basin, almost 65% of the
cropland is managed by farmers with operations of at least
500 acres, while those with operations under 50 acres man-
age less than 3% of the total acreage (U.S. Department of
Agriculture 2014). Since the focus of our article is farmers’
water-quality-related management choices, it seems appro-
priate to focus on the larger farms, or the farmers who man-
age proportionally more acreage in the watershed, which is
more important from both a behavioral and a water quality
control perspective (Zhang et al. 2016).
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their sociopsychological and demographic
characteristics, and farm and field characteris-
tics. In this article, we focus on three conser-
vation practices identified by multiple models
as critical and effective in reducing nutrient
runoff from the Maumee River watershed.
These practices include subsurface fertilizer
placement via banding or in-furrow with seed
(referred to as subsurface placement), post-
fall-harvest cover crops (referred to as cover
crops), and commercial fertilizer application
rate reduction (referred to as P rate reduction)
(Gildow et al. 2016; Kelley and Sweeney
2005; Scavia et al. 2014, Scavia et al. 2017). A
map of subsurface placement adoption based
on the survey is presented in Appendix A.

We construct our dependent variable for
subsurface placement and cover crop adop-
tion—whether the practice has been adopted
already, and nonadopters’ self-expressed at-
titudes toward future BMP adoption—using
two questions from the survey. Attitudes to-
ward future adoption ranges from O (will never
adopt), to 1 (unlikely to adopt), 2 (likely to
adopt), or 3 (will definitely adopt). We com-
bine the already-adopted farmers into this vari-
able by assigning the adopted decisions as 4
(have already adopted). We consider farmers
responding 3 or 4 as potentially adopting the
conservation practice in the next year in the
policy simulations, which reduces the risk of
overestimating the adoption probability of ex-
isting adopters. Table 1 shows that 40% and
18% of farmers have already adopted subsur-
face placement and cover crops, respectively;
and, an additional 10% and 5% of producers,
respectively, report that they will definitely
adopt the corresponding practices in the future.
Table 1 also shows that on average, farmers in
the watershed used 100 pounds of P fertiliz-
ers on a per acre basis, with higher application
rates when growing corn or applying for more
than one year. For farmers who applied at least
some P in 2013, their average application rates
are around 113 pounds per acre.

We also include the sociopsychological,
socioeconomic, and field-level spatial char-
acteristics as explanatory variables (Table 1)
as established by previous studies (Huang et
al. 2000; Kurkalova, Kling, and Zhao 2006;
Zhang et al. 2016). The sociopsychological
characteristics include perceived efficacy, per-
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Table1
Variable Descriptions and Summary Statistics

Variable Description Observations Mean Std. Dev.  Min.  Max.

Farmer Choice

Adopt_place The attitude of adopting subsurface 2,134 2.65 1.25 0 4
placement (0 “will never adopt,”
1 “unlikely to adopt,” 2 “likely to
adopt,” 3 “will definitely adopt,” and 4
“have already adopted”)
The attitude of adopting cover crops 2,142 1.96 1.13 0 4
(0 “will never adopt,” 1 “unlikely to
adopt,” 2 “likely to adopt,” 3 “will
definitely adopt,” and 4 “have already

Adopt_cover

adopted”)
P_rate P fertilizer rate (pounds per acre of P,0O5 1,488 100.07 252.84 0 300
applied in 2013)
P_price_actual Actual P fertilizer price ($/ton) 1,489 576.20 107.24 375 800
P_price_hypothetical ~ Hypothetical P fertilizer price ($/ton) 1,489 367.60 157.17 200 950
Sociopsychological Characteristics
Efficacy_placement Perceived effectiveness of adopting 2,189 2.59 0.97 0 4
subsurface placement at reducing
nutrients (0 “not at all” to 4 “to a great
extent”)
Efficacy_cover Perceived effectiveness of adopting 2,197 2.56 1.01 0 4
cover crops at reducing nutrients (0
“not at all” to 4 “to a great extent”)
Perception_control Farmers’ perception of control over the 2,189 3.49 1.02 0 6
farm (0 “no control” to 6 “complete
control”)
Risk_mean Risk attitude in general (0 “not willing 2,198 5.17 2.09 0 10
to take risks” to 10 “very willing to
take risks”)
Farmer_identity Farmer identity (ranges from —4 2,185 1.29 0.84 -1.26 4
“greatest identity as productionist”
to 4 “greatest identity as
conservationist™)
Socioeconomic Characteristics
Age Age (years) 2,227 58.16 11.87 17 85
Farm_income Annual gross farm income (2013 dollars) 2,039 3.05 1.33 1 5
(1 “<$50,000,” 2 “$50,000-99,999.”
3 “100,000-$249,999,” 4 250,000~
499,999, 5 “>500,000")
Field-Level Characteristics
Field_acre Acreage of the field 2,227 51.65 49.13 5 650
Soil_quality Soil quality of the field (1 “low,” 2 2,227 2.02 0.82 1 3
“medium,” 3 “high”)
Slope Slope of the field (1 “0%-2%,” 2 2,197 2.13 1.43 1 5
“2%-5%,” 3 “5%—10%,” 4 “>10%,” 5
“not sure”)
Field_rent Binary, =1 if field is rented 2,204 0.36 0.48 0 1

ception of control, risk attitude, and farmer  between conservationist values and produc-

identity, which quantitatively measures farm-
ers’ productivity-oriented versus conserva-
tionist inclinations (Arbuckle 2013; McGuire
et al. 2015). Farmer identity is the difference

tionist values, which could range from —4
(greatest identity as productionist) to 4 (great-
est identity as conservationist). For subsurface
placement and cover crops, we have a prac-
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tice-specific perceived efficacy measure that
represents the farmers’ beliefs in the effective-
ness of that particular practice at reducing nu-
trient loss, ranging from 0 (not at all) to 4 (to
a great extent). This psychological factor has
been found to be a major driver of farmers’
adoption choices of fertilizer timing (Burnett
et al. 2015; Zhang et al. 2016), so we expect a
higher perceived efficacy of a particular con-
servation practice in reducing soil loss will
lead to higher adoption rate of P placement
or cover crops. Additional sociopsychologi-
cal measures include the farmer’s perceived
control over nutrient loss, ranging from 0 (no
control) to 6 (complete control), and the farm-
er’s risk attitude measured as the willingness
to take risks on a scale from O (not willing to
take risks) to 10 (very willing to take risks).

For socioeconomic characteristics, we in-
clude the farmer’s age and annual gross in-
come for the 2013 production year (farm_in-
come), which ranges from 1 (<$50,000), to 2
(850,000-$99,999), 3 ($100,000-$249,999),
4 ($250,000-$499,999), and 5 (>$500,000).
For field-level characteristics, we include the
acreage of the field, soil quality (low, medium,
or high), slope (0%—2%, 2%—-5%, 5%—10%,
>10%, not sure), and whether the farm is
rented. We also calculate a farmer- and prac-
tice-specific adoption cost for each practice
using farmers’ stated expenditures on nutrient
inputs, machinery, labor, and farm- or region-
al-level input prices. Appendix B and Appen-
dix C show the data and the methodology of
how we constructed this variable.

3. Spatially Integrated Economic-
Hydrologic Model

Model Overview and Policy Scenarios

We link economic models of farmers’ BMP
adoption decisions with a hydrologic model
to predict and evaluate the effects of differ-
ent nutrient management policies on farm-
ers’ management decisions and the resulting
downstream P loadings into Lake Erie. In par-
ticular, we develop three separate field-level
farmer decision-making models: an ordered
logit model of future subsurface placement
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adoption, an ordered logit model of future
cover crops adoption, and a fertilizer demand
model for reduction in fertilizer application
rates. We use these models to predict changes
in the adoption of these practices under each
nutrient management policy, and then link
them to the SWAT model to simulate the
downstream water quality improvements as
measured by the reduction in P loadings. The
proceeding sections provide more details on
each component of this integrated model.

Using this integrated economic-hydrologic
model, we analyze the cost-share payments
for subsurface placement or cover crops. The
cost-share payments we examine range from
$1 to $80 per acre, for which the midpoint is
close to the U.S. Department of Agriculture’s
Environmental Quality Incentives Program
payment of $42.99 per acre for enhanced nu-
trient management with deep placement. The
alternative nutrient management policy sce-
narios we examine are a fertilizer tax and a
novel tax/cost-share payment combination
policy that imposes a fertilizer tax for all
farmers and then uses the tax revenue col-
lected to offer cost-share payments for sub-
surface placement or cover crops. We hypoth-
esize that alternative nutrient management
policies, such as spatially targeted policies or
the tax-payment combination policy, could be
more cost-effective in achieving nutrient re-
duction goals.

Economic Models of Farmer Decision-
making

BMP Adoption Model Incorporating
Changes in Adoption Costs

We use an ordered logit model to examine the
factors driving the adoption choice of BMPs
(subsurface placement and cover crops), and
then predict the future likelihood of adoption
under different policy incentive programs. We
use the ordered logit model following Zhang
et al. (2016) because the dependent variable
is ordinal and categorical. We estimate the
model using the “ologit” command via Stata
15 as follows:

ik =0 +0C; +BL +yX; +&, k=0,1,2,3,4, [1]
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where the dependent variable y; is future
adoption decisions of a particular BMP made
by farmer i, which ranges from O (will never
adopt), to 1 (unlikely to adopt), 2 (likely to
adopt), 3 (will definitely adopt), and 4 (al-
ready adopted). The key variable of inter-
est is the predicted farmer-specific adoption
costs for this particular BMP C;, which is
measured as the additional production costs
incurred due to farmer i’s adoption of this
particular BMP. Appendix C shows in detail
how we calculate this adoption cost measure.
In a nutshell, we regress the total field-level
production costs, measured using the expen-
ditures and inputs reported by the farmer
respondent shown in Appendix B, on an al-
ready-adopted-BMP dummy and its interac-
tion terms with age, field size, and a host of
farmer and field characteristics. We use the
coefficients for the BMP adoption dummy
and its interactions to predict the additional
production costs induced by the adoption of
that particular BMP; and, we then use the
predicted values at the individual level in
equation [1] as C;. Other explanatory vari-
ables in equation [1] include field character-
istics X; (e.g., field size, soil quality, slope,
and whether the field is rented from others)
and farmers’ demographic and socioeco-
nomic characteristics I; (e.g., perceived ef-
ficacy of the BMP, mean risk level, identity
as a farmer, perceived control over nutrient
runoff, age, and gross farm income). We in-
clude county-level fixed effects a; and clus-
ter standard errors at the county level to con-
trol for unobserved spatial heterogeneity and
heteroskedastic errors, which effectively con-
trols for spatial dependence.

Under each scenario with a payment sub-
sidy or a tax-payment combination policy, we
predict a farmer’s likely future adoption prob-
ability by summing the predicted probabilities
for categories 3 (will definitely adopt) and 4
(already adopted) in the ordered logit model
using the “predict” command via Stata 15. We
interpret the probabilities as a set of rules that
govern the behavior of BMP adoption in the
near future, and we convert the predicted prob-
ability to a binary adoption outcome following
Lewis and Plantinga (2007). In particular, we
draw a random number from uniform distribu-

tion U [0, 1] and compare the predicted prob-
ability of adoption with this random number.
If the predicted probability is larger than the
random number, then we assume the farmer
will adopt the BMP, otherwise, we assume the
farmer will not adopt the BMP. We sum the
land acres that are predicted to be operated
by future adopters and divide it by the total
acres across all surveyed producers in a given
county. This generates the predicted land
share of each BMP for each policy scenario
at a county level. We run the economic model
500 times and examine the summary statistics
for this land share of each county. The county
means of the 500 runs are very close to what
we use in the analysis, and standard devia-
tions are all under 0.04 and sample variances
are under 0.0012. Therefore, we are confident
that our simulation results are representative.
We use this predicted share to integrate these
farmer land management predictions with the
hydrologic model, as explained at the end of
this section.

In addition to the uniform cost-share pay-
ment, we also explore spatially targeted poli-
cies that only focus on the counties with high-
est level of nutrient runoff. Based on SWAT
analysis, we identify the top 20% counties
with highest total mass of TP or DRP runoff.
With three counties overlapping on the two
lists, we identify nine counties as the runoff
hotspots.?

Fertilizer Demand Model

To evaluate the effects of a fertilizer tax policy
on commercial P fertilizer application rates,
we estimate a fertilizer demand model. This
reduced-form model is similar in spirit to the
model presented at length by Zhang (2015).
Our farmer survey is based on farmers’ crop
and nutrient management choices in 2013.
This single-year data may not provide enough
variation to reveal farmers’ true demand elas-
ticity of P fertilizers—over the past decade,
the average U.S. P price index ranged from
$300/ton to $900/ton. As a result, we added
two hypothetical questions to induce farmers’

3Adams (IN), De Kalb (IN), Fulton (OH), Henry (OH),
Hillsdale (MI), Paulding (OH), Putnam (OH), Van Wert
(OH), and Williams (OH).
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responses under alternative P fertilizer price
scenarios. Specifically, we ask, “If commercial
P fertilizer prices had been $X/ton, what rate
of P would you have applied on this field for
this most recent crop? ___ lbs/acre,” in which
X could be 200, 250, 300, 350, 450, 500, 550,
750, 800, 850, or 900, thus spanning the re-
cent range of fertilizer price movements. With
this information, we construct a reduced-form
panel data model using P application rates un-
der the actual price and two hypothetical price
scenarios and identify the mean elasticity of P
fertilizer demand. Specifically, the panel data
fixed effects model of fertilizer demand is

Xipir = Kpio + 7pio tipy + 0y t =1,2,3, (2]

where 0; is individual fixed effects; 7;p; is
the normalized P fertilizer prices adjusted by
fertilizer types; x;p;, denotes the fertilizer ap-
plication rate by farmer i for each crop and
fertilization frequency choice /; xpq is the in-
tercept denoting the baseline application rate;
and, 7 represents the one actual and two hypo-
thetical fertilizer price scenarios.

Previous research has demonstrated that
farmers’ fertilization choices depend on
crop, crop rotation, and fertilizer application
frequency choice (Zhang 2015). As a result,
we estimate equation [2] separately for each
of five combinations of crop and P applica-
tion frequency choices (denoted by /): corn
and single-year application (corn-single, cs),
corn and multiyear application (corn-multi,
cm), soybean and single-year application
(soybean-single, ss), soybean and multiyear
application (soybean-multi, sm), and other
crop choices (other, o). For each crop and fer-
tilization frequency choice /, we can estimate
the key parameter of interest—the mean coef-
ficient for P fertilizer prices (ypj). The esti-
mated demand elasticity based on yp;q could
be interpreted as a “sufficient statistic,” as ar-
gued by Chetty (2009), which can be identi-
fied using reduced-form studies and then used
to simulate policy changes and welfare effects
for a fertilizer tax policy or a policy that cou-
ples fertilizer taxes with payments for conser-
vation practices.

November 2020

Revenue-Neutral Hybrid Policy

While single policies, be they cost-share pay-
ment or fertilizer tax, may not be sufficient
to achieve the 40% reduction goal, we pro-
pose an innovative “revenue neutral” way to
link the two types of policies to increase ef-
fectiveness: using the tax revenue as subsidy
for BMP payments. We look for the optimal
tax that minimizes loading by balancing the
trade-off between reduced fertilizer applica-
tion and reduced revenue for BMP payment
when tax is sufficiently high. For simplicity,
we only focus on the payment for subsurface
placement in our article because it is signifi-
cantly more effective than cover crops in our
single practice simulations.

Suppose the policy maker’s goal is to min-
imize the P load to Lake Erie, and the reve-
nue-neutral policy uses the entire fertilizer tax
revenue for cost-share payment. That is,

min L = f(x(7)) + g(B(R)), s.t. R=17x(7), [3]

where L is the total P runoff, x is fertilizer
applications on farms in the Maumee River
watershed, B is the quantity of BMPs applied
on farms in the watershed, 7 is fertilizer tax;
and R is total fertilizer tax revenue. Based on
our analysis, f, >0, gg <0, x, <0, and Bp
> (. That is, more fertilizer application leads
to more P runoff, higher BMP adoption leads
to lower P runoff, higher tax leads to lower
fertilizer application, and higher tax revenue
means higher total payment to BMPs, which
leads to higher BMP adoption. To solve the
runoff minimization problem, we set the first
order condition as

Jxxz +gpBrR; =0 (4]
and derive the expression

R, = _Saxe <0,
gBBr

which indicates that optimal tax should be set
higher than the level that would maximize tax
revenues. Equation [4] can be restated as

fix; +gpBr(x+17x,)=0, [5]

which implies that the optimal is
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s__ S X

gpBr X

The x / X, term accounts for the offsetting ef-
fect of a reduction in x on the amount of reve-
nues available for BMP payments. This makes
explicit the trade-off that arises in setting the
optimal tax to reduce loadings: increases in
the tax will reduce fertilizer applications, but
reductions in x also reduce the total revenues
available for BMP payments. This also clari-
fies how the optimal tax depends on the phys-
ical system: the greater the effectiveness of
fertilizer reduction on reduced loadings, f,, or
the greater the effectiveness of the BMP in re-
ducing loadings, g, the higher the optimal tax
will be. However, the more responsive farm-
ers are in the BMP adoption decisions to pay-
ments, the lower the optimal tax. Altogether
this implies that the optimal tax is determined
by a combination of behavioral and physical
relationships. For some conditions, the opti-
mal tax to reduce nutrient loadings may be a
corner solution in which farmers’ demand for
fertilizer is driven to zero.

This approach ignores other private and so-
cial costs of fertilizer reduction, including the
forgone profits that may result from reduced
fertilizer use. To account for these, we can re-
frame the problem by defining the optimal tax
as the tax that equates the marginal social ben-
efits (MSB) and marginal social costs (MSC)
of fertilizer use. Suppose the marginal product
of fertilizer in producing crops is yx and the
average price of the crop is p. The MSB of fer-
tilizer x consists of the marginal private bene-
fit, p,,, as well as the marginal public benefits
of increasing x, which are generated through
the increase in tax revenues that support the
cost-share payments for BMPs that reduce
ecosystem damages by reducing loadings.
Suppose e; represents the marginal damages
of loadings to ecosystem services, then the
marginal public benefits of x are e;gzBRR,.
The MSC consist of both marginal private
cost to the farmer with the fertilizer tax 7, r
(14 7), where r is the fertilizer price, and a
public cost, which is the ecosystem damages
from loadings that result from a marginal in-
crease in fertilizer applications, e;f,. Thus,
MSB = MSC implies

Pyx tergpBrR, =r(l+7)+ep [y (6]

Given R, =7, the optimal tax that maxi-
mizes social net benefits is

«_epfyu—pyytr
TS =
e 8pBr—r

Assuming that the public benefits from reduc-
ing nutrient loadings are sufficiently large,
so that both the numerator and denominator
are positive and * >0, then the optimal tax
increases with the marginal ecosystem dam-
ages of fertilizer, decreases with the marginal
effectiveness of BMP payments in reducing
loadings, and decreases with the value of the
marginal product of fertilizer.

In the empirical analysis, we implement
the hybrid policy analyses by using the esti-
mated fertilizer price elasticities to calculate
the change in fertilizer use for a range of tax
rates at the county level and sum up total tax
revenues across the watershed. We then allo-
cate the revenues for each of the tax scenarios
as cost-share payments based on the most ef-
ficient payment level, defined as the one that
leads to the highest adoption rate (see Appen-
dix D), and assume that it is administered in
such a way that achieves this best possible out-
come. Specifically, using the combined results
of the farmer decision-making and hydrologic
models, we plot changes in loadings as a func-
tion of the tax rate and compare the outcomes
of tax-only policies with the revenue-neutral
hybrid policies in Appendix D. We also show
maps of the policy costs and tax burden for
different counties under these uniform, tar-
geted, or hybrid policies in Appendix E.

Hydrologic Model: The SWAT Model

The SWAT model is a watershed-scale model
that has been continuously developed over
the past 30 years by the U.S. Department of
Agriculture Agricultural Research Service
(USDA-ARS) (Arnold et al. 1998; Gassman
et al. 2007). SWAT incorporates a wide va-
riety of biophysical characteristics such as
topography, land use/cover, soil, and climate
and is able to facilitate farmer land manage-
ment decisions such as fertilizer, crop, and tile
drainage choices, as well as model changes
in stream flow and the transport of nutrients


https://uwpress.wisc.edu/journals/pdfs/LE-96-4-04-Liu-appD.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-96-4-04-Liu-appD.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-96-4-04-Liu-appD.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-96-4-04-Liu-appE.pdf

Downloaded from at UNIV OF MICHIGAN LIBRARIES on September 5, 2023. Copyright 2020

520 Land Economics

(Arnold et al. 1998). Flow and nutrient trans-
port processes within the SWAT model are
routed at multiple scales. These scales, rang-
ing from the smallest to the largest, include
hydrologic response unit (HRU), subbasin,
and watershed levels. Although results can be
derived and output from these multiple spa-
tial scales, model processes exclude water,
sediment, and nutrient flows across HRUs and
instead are aggregated at the subbasin level
and are routed across subbasins or through
the stream phase of the model (Malago6 et al.
2017).

The SWAT model has been extensively
used to analyze how land use, agricultural
management practices, and climate change
affect water quality in Lake Erie (e.g., Bosch
et al. 2014; Gildow et al. 2016; Michalak et
al. 2013; Scavia et al. 2017). However, these
biophysical studies assume large-scale or ran-
dom adoption of conservation practices and
do not link the physical process model with
economic behavior assessing actual adoption
by farmers, which makes it hard to predict the
practicality and efficiency of the scenarios.

Building on work by Gebremariam et al.
(2014), Gildow et al. (2016), and Kalcic et
al. (2019), we build a spatially explicit SWAT
model calibrated to the western Lake Erie ba-
sin to simulate the hydrology and nutrient cy-
cling of the Maumee River watershed. In par-
ticular, we delineate 358 subbasins within the
watershed and further divide them into 24,256
HRUs based on spatial features in land use,
soils, and topography (Kast 2018). Agricul-
tural practices including crop rotations, fertil-
izer applications, tillage practices, subsurface
drainage, and other BMPs are incorporated in
the model (at the HRU-level) in consultation
with the USDA-ARS, the Ohio State Univer-
sity Agriculture Extension personnel, and our
previously mentioned farmer survey (Burnett
et al. 2015; Zhang et al. 2016). Key water
quality data such as stream flow, TP, and DRP,
as measured at the Waterville River gaging
station, were obtained from the National Cen-
ter for Water Quality Research at Heidelberg
University. These data were used to calibrate
the SWAT model from 2005 to 2010 at a satis-
factory level (Moriasi et al. 2007).
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Linking Economic Models and SWAT for
Policy Simulations

For a fertilizer-tax policy, the linkages be-
tween the economic farmer decision-making
models and the SWAT model are simple. Spe-
cifically, a fertilizer tax results in higher effec-
tive fertilizer prices, which translate into pre-
dicted reduction in fertilizer application rates.
The average predicted fertilizer rates at the
township level are aggregated to the county
level, then randomly allocated to HRUs to
obtain the HRU-average changes in P appli-
cation rates to simulate changes in P loadings.

For the cost-share payment policies, we
rely on the BMP adoption models outlined in
above to generate predicted changes in near-
term BMP adoption decisions at the field
level, which are converted to share of adopted
acres by pooling across survey respondents
at the county level. We then downscale the
county-level predicted changes in adopted
acreage share to the 358 subbasins within the
SWAT model, with an average of 4,834 acres
per subbasin. To do so, we assume that the
predicted county-level land share of a given
BMP, calculated as described in above, holds
at a smaller spatial subbasin level. We then
randomly assign BMP adoption to each HRU
within a subbasin, using the predicted share
of land acres as a constraint, so that the total
share of land allocated to a given BMP corre-
sponds to the predicted share at both subbasin
and county level. With the newly developed
SWAT model, we are able to divide the sub-
basins into finer-scale spatial units of 24,256
HRUs, with an average size of 176 acres.

To evaluate the cost-effectiveness of dif-
ferent policy scenarios, we develop a trade-
off frontier that contrasts the policy costs
incurred by governments with water quality
outcomes measured in TP and DRP loading
reductions. We assume that the policy costs
for the cost-share programs are the total
outlays of the cost-share payments to farm-
ers, and assume that there are no additional
program costs given the necessary program
structure for administering these payments
is already in place. In contrast, we assume
there is administrative cost from the tax pol-
icies. Previous studies on the fertilizer tax
policy implementations in Europe show that
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Table 2
Ordered Logit Model Estimates of Subsurface Placement and Cover Crops Adoptions
Variable Adopt Subsurface Placement Adopt Cover Crops

Psychological-Demographic Characteristics

Perceived_efficacy_of_subsurface_placement
Perceived_efficacy_of_cover_crops
Perception_control

Risk_mean

Farmer_identiy

Socioeconomic Characteristics

Age
Farm_income

Field-Level Spatial Characteristics

Subsurface_placement_cost
Cover_crops_cost
Field_acre

Soil_quality

Slope

Field_rent

Fixed effect
Observations
Average baseline adoption rate (%)
Maumee
Indiana
Michigan
Ohio

0.7103%%* (0.061)

0.0536 (0.056)
0.0168 (0.027)
—-0.0182 (0.066)

0.0001%* (0.003)
—0.0832%*%* (0.045)

—0.2416%** (0.015)

0.0031%%* (0.001)
0.0907 (0.067)

~0.0407 (0.039)
0.0718 (0.117)

0.8700%** (0.057)
0.0552 (0.051)
0.0294 (0.025)
0.1631%** (0.062)

—0.0110%* (0.003)
0.1064*** (0.041)

~0.2835%+* (0.021)
0.0021%* (0.001)
0.0282 (0.060)

-0.0260 (0.036)
0.0069 (0.108)

County level County level

1,796 1,801
51.1 19.7
46.1 14.0
522 24.7
52.6 20.9

Note: Standard errors in parentheses.
*p<0.1; #* p <0.05; *** p <0.01.

the uniform tax would cost 7% to 10% of the
tax revenue collected, while monitoring a
spatially differentiated fertilizer tax, assumed
to be at the individual parcel or management
unit, would cost 25% to 30% of the tax rev-
enue collected (Lankoski, Lichtenberg, and
Ollikainen 2010). Given that even our zonal
policy is still quite aggregate in spatial scale,
and therefore not nearly as administratively
burdensome as a fully spatially differentiated
tax, we assume a policy cost of 7% of the total
tax revenues for the “tax only” policy scenar-
ios and a slightly higher amount, 10%, for the
policy cost to implement, collect, and recycle
the tax under the hybrid revenue-neutral poli-
cies. Note that because our current economic
models do not explicitly model farmers’ profit
maximization decisions, our policy costs do
not include the potential profit impacts in-
duced by these BMP adoptions.*

4. Results and Discussions

BMP Adoption Changes under Different
Policy Scenarios

Based on our analysis as described above, we
define our baseline scenario as the predicted
adoption rate without any policy interven-
tions, which is about 51% adoption of sub-
surface placement and 20% adoption of cover
crops (Table 2).

Following equation [1], we use the field-
and farmer-specific adoption cost as an ex-
planatory variable to estimate effects of socio-
psychological, socioeconomic, and field-level
spatial characteristics on adoption choice.
As previously explained, Appendix C shows
the results and procedures of how we calcu-
late field- and farmer-specific adoption costs.
Regression results from ordered logit models

4Please see Zhang (2015) for an example of a more com-
prehensive analysis of the policy costs for uniform and spa-

tially targeted fertilizer tax policies, including changes in
farmers’ profitability.
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Figure 2
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Increases in Best Management Practice (BMP) Adoptions under
Different Nutrient Management Policy Scenarios
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are odds ratios, which we translate to expo-
nentiated coefficient estimates for easier un-
derstanding in Table 2. Note that although our
objective is to understand and predict field-
level adoption decisions under different policy
interventions rather than causal identification,
our prediction implicitly relies on the parame-
ters on the adoption costs being correctly esti-
mated. A higher adoption cost for subsurface
placement or cover crops is hypothesized to
lead to a lower probability of adopting these
practices, which our results confirm: a $10 in-
crease in the adoption costs for fertilizer sub-
surface placement leads to a 24% decrease in
the likelihood of adopting this practice in the
future. Comparatively, a $10 increase in field-
level adoption cost for cover crops results in
a 28% decrease in the future likelihood of
adopting cover crops. One factor that consis-
tently affects farmers’ adoption decisions is
the perceived efficacy of their conservation
practices in reducing nutrient runoff. Per-
ceived efficacy has a large positive impact on
adoption decisions—a one unit increase in the
perceived efficacy indicator almost doubles
the likelihood of future adoption—confirm-
ing the findings of Zhang et al. (2016) and
Wilson et al. (2019). We also find field acre-
age is positively correlated with BMP adop-
tion decisions, possibly due to economies of
scale. Other field and farmer characteristics
do not have consistently significant impacts
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on farmers’ adoption decisions. Farm income
has opposite impacts on the adoption deci-
sion of subsurface placement and cover crops.
These results could be explained by the intrin-
sic differences between these two BMPs and
emphasize the heterogeneity among BMPs as
well as farmers and fields, which is consistent
with Zhang et al. (2016).

We aggregate the predicted adoption land
share at the county level for each payment
scenario and present the average adoption
rates (Figure 2a) measured in percentage of
acres (adoption rate is the total acreage of ad-
opted crop land divided by the total acreage
of crop land). We see that with a $20 per acre
to $80 per acre payment, the adoption rate of
subsurface placement can increase from 46%
to 65%.> For cover crops, the adoption rate
can increase from 20% to 63% of all cropland
acres in the watershed.

We also explore how fertilizer tax influ-
ences farmers’ fertilizer amount decisions and
report the results for the reduced-form panel
data analysis equation [2] in Table 3. This
model is estimated separately for each crop
and fertilization frequency choice. The mean
estimated elasticity of P fertilizer demand is
derived from the coefficient for p_price_norm,

which is the estimated yp;g in equation [2],
while holding all other variables constant at

5Policy baselines are different from the survey baselines
because of uncertainties in future adoption decisions.
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Table 3
Estimated Elasticity of Phosphorus (P) Fertilizer Demand from Reduced-Form Panel Regressions

Corn Single Corn Multi Soybean Single Soybean Multi
Linear Panel Fixed Effects Model
Actual and hypothetical P price —0.4376* —0.5634%** —0.4104%** —0.8462%%**
(0.2259) (0.1689) (0.1111) (0.2325)
Intercept 115.89%%* 112.47#** 109.52%** 148.71%**
(12.77) (9.43) (6.186) (13.39)
Number of observations 1,097 603 405
Implied mean elasticity -0.2714* —0.388*** —0.2638*** —0.4876%**
Linear Panel Fixed Effects Model; Hypothetical Questions Only
Hypothetical P price —0.4682%#* -0.3616%** —-0.3561%%* —0.8307***
(0.1554) (0.1063) (0.1012) (0.2620)
Intercept 124.65%%* 100.82%** 112.63%%* 155.93
(8.71) (5.84) (5.559) (14.990)
Number of observations 731 402 270
Implied mean elasticity —-0.2665%** —0.2456%** —-0.2101*** —0.4383%#**
Average actual P application rate (pounds per acre) 106.22 123.95 109.35 112.03

Note: Standard errors in parentheses.
*p<0.1; ** p <0.05; *** p <0.01.

means. On average, the estimated elasticity
of P fertilizer demand ranges from —0.264 to
—0.488. For example, there is a 2.64% reduc-
tion in P fertilizer rate given a 10% fertilizer
price increase for corn fields with single-year
fertilization. These estimates are similar to
previous estimates of elasticity of fertilizer
demand (Griliches 1958; Pitt 1983), which
ranges from —0.20 to —0.95. A comparison
of the elasticities across different fertiliza-
tion frequency choices reveals that fields
with multiyear fertilization application have
a significantly higher elasticity of P demand
than fields with single-year application. This
makes sense because farmers are more likely
to use greater application rates with multiyear
applications and could make flexible changes
facing input price shocks. To evaluate the
stability of our elasticity estimate, the lower
panel of Table 3 shows only responses from
these two hypothetical fertilizer application
rate questions and assesses the effects of po-
tential “hypothetical bias” on the estimated
coefficient in P fertilizer prices. The implied
elasticities are very similar to the main speci-
fication, except for corn with multiyear appli-
cations, which is also within the range of pre-
vious estimates from the literature. We show
the P fertilizer application rate (pounds per
acre) under different tax policies in Figure 2b.

P Loadings under Different Policy
Scenarios through Linkage with the SWAT
Model

To link the predicted adoption rate under each
policy scenario with SWAT, we randomly al-
locate the adoption rate within each county
across 24,256 HRUs while maintaining the
predicted adoption rate at the targeted level
for each subbasin. HRUs are the smallest spa-
tial units at which hydrologists can identify
nutrient flow in the SWAT model. Simulations
generate monthly TP and DRP runoff from
2005 to 2015 (with 2000 to 2004 as the val-
idation period), and we calculate the yearly
spring (March to July) load to match the 2012
GLWQA target.® Figure 37 shows the average
spring load change under each policy.

In Figure 3a we show the percentage re-
duction in spring TP and DRP loadings un-
der uniform or targeted cost-share payments
for subsurface placement. With uniform pay-
ments ranging from $20 to $80 per acre, a

6The 2000-2004 period was used as both the model
validation period and as the model “spin up” time. We ran
SWAT models from 2000 to 2015 but skip reporting results
for the first five years of this period. We also used the period
2000-2004 in the validation process to calibrate the model.

7Please note that in Figures 3 and 4 we include some un-
realistically high tax scenarios, up to 1,000%.
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Figure 3

Reduction in Total Phosphorus (TP) and Dissolved Reactive Phosphorus (DRP)
Loadings under Different Nutrient Management Policy Scenarios
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gain in adoption rate for subsurface placement
from 46% to 65% results in load reductions of
8% in TP and 13% in DRP. The figure shows
that the same level of total cost-share payment
budget can achieve a much higher P reduction
when targeting the runoff hotspot counties
because it enables higher payments for fewer
fields. Figure 3b shows uniform payments
but for cover crops, where we see negligible
P reductions of less than 1%. A number of
factors could be responsible for the negligible
impact of cover crops on P reductions, includ-
ing model specification of the timing between
removing cover crops and planting the next
crop in rotation. In the SWAT model, the time
between the removal of cover crops and the
planting of corn was 22 days. During this time
the soil is bare and without cover, which could
lead to more nutrient discharge than if the soil
were covered (Zhang et al. 2016). Some pre-
vious literature is consistent with the negligi-

100 200 00 500 700 00 900
Uniform P tax rate (%) used to collect payments for placement

=

ble effect of cover crops on P reductions (e.g.,
Hanrahan et al. 2020), while other studies
have found much larger effects on reducing
P losses from increased cover crop adoption
(Hanrahan 2020; Singh, Williard, and Schoo-
nover 2018; Iowa Department of Agriculture
and Land Stewardship, lowa Department of
Natural Resources, and lowa State University
College of Agriculture and Life Science 2017;
Heathwaite and Dils 2000; Sharpley, Smith,
and Hargrove 1991).8

In Figures 3c and 3d we show, respectively,
the percentage reduction for various levels of

8 Although not a focus of this paper, the SWAT model
showed cover crops had a greater impact on nitrogen losses
(3% as adoption rate increased from 20% to 63%) than P
losses (<1%). However, these losses are below levels found
in other studies (Ruffatti et al. 2019; Thapa, Mirsky, and
Tully 2018).The factors described above could also contrib-
ute to the muted effectiveness of cover crops on nitrogen loss
reductions in this SWAT model.



Downloaded from at UNIV OF MICHIGAN LIBRARIES on September 5, 2023. Copyright 2020

96(4) Liu et al.: BMPs and Nutrient Reduction 525

Figure 4
Trade-off Frontier of Total Phosphorus (TP) and Dissolved Reactive Phosphorus (DRP) Loading
Reductions versus Policy Costs under Different Nutrient Management Policies
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a fertilizer tax and the revenue-neutral hy-
brid policy in which the revenues from the
fertilizer tax are used as BMP payments. The
results demonstrate that the hybrid policy is
more effective than either a standalone fertil-
izer tax or a cost-share policy. For example,
at a 200% (400%) tax rate, we find that the
reduction in TP and DRP is 22.5% (40%) and
29% (51%), respectively, for the tax-only sce-
narios and 40.5% (54%) and 53% (69%) for
the hybrid policy scenarios. By comparison,
if taxpayer dollars were used to generate the
same amount of funds for cost-share pay-
ments for subsurface placement as is gener-
ated by a 200% fertilizer tax, then this would
correspond to a $170 per acre uniform pay-
ment with estimated adoption rates of 72%
and load reductions of 18% in TP and 24%
in DRP.

Trade-off Frontier Analysis of Different
Nutrient Management Policies

We establish the policy trade-off frontier by
contrasting the predicted DRP and TP re-
duction rates with the cost of each policy
incurred by governments, to evaluate the
cost-effectiveness of each policy (Figure 4).
As explained above, we calculate only the di-
rect government outlays as the policy costs.
Therefore, the total cost-share payments are
the policy costs for the voluntary BMP adop-

0 20 40 60 80 100 120 140 160 180 200
Net policy costs paid by taxpayers (million dollars)

tion programs. Recall we assume that the
policy costs for the fertilizer tax and hybrid
tax/cost-share policies are 7% and 10% of the
tax revenue, respectively. Figure 4 demon-
strates that the revenue-neutral combination
policy of allocating tax revenue as payment
for subsurface placement is the most cost-ef-
fective policy. Not surprisingly, because this
is a revenue-neutral policy, it dominates any
cost-share payment program that imposes the
policy cost on taxpayers. Because it not only
raises the cost of pollution, but also increases
BMP adoption by providing cost-share pay-
ments, the hybrid policy generates additional
water quality gains relative to the fertilizer tax
scenarios in which revenues are not redistrib-
uted in this way.

5. Conclusions

HABs and hypoxia in freshwater and marine
ecosystems are a growing global concern. In
the United States, HABs in Lake Erie have
worsened since the 1990s—the five worst
blooms on record all occurred since 2011 (Wil-
son et al. 2019). The size of the hypoxic zone
in the Gulf of Mexico is not smaller despite
decades of nutrient reduction efforts. Previ-
ous research has decidedly linked agricultural
nutrient runoffs with these downstream water
quality problems. Our article focuses on the
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cost-effectiveness of various nutrient man-
agement policies in reducing nutrient runoff
by developing a spatially integrated econom-
ic-hydrologic model of the western Lake Erie
basin. Our integrated model combines eco-
nomic analysis of micro-level farmer adop-
tion behavior of three key BMPs—subsurface
placement, cover crops, and reduced P fertil-
izer applications—with a hydrologic model,
which allows us to quantify changes in indi-
vidual BMP adoptions and watershed-scale
P loadings. Our results show that subsurface
placements and P application rate reductions
are more cost-effective than cover crops, and
that a hybrid revenue-neutral policy, which
applies fertilizer tax revenue as a cost-share
payment for subsurface placement, is a far
more cost-effective approach in achieving the
desired improvements in water quality. We
also find that, despite substantial increases in
the adoption of single BMPs with increases in
cost-share payments, the reductions in P are
far below the 40% reduction goal. In contrast,
the tax or hybrid policies can achieve the pol-
icy target and in a much more cost-effective
manner. For example, a 400% fertilizer tax
could lead to 39.5% reduction in TP, while a
hybrid policy in which a 200% fertilizer tax is
applied and recycled for cost-share payments
for subsurface placement can lead to 40.5%
reduction in TP.

Our findings have important implications
for the design of nutrient management poli-
cies and integrated assessment models of nu-
trient runoff and water quality. In particular,
our results show that by ignoring biophysical
complexities, such as legacy P in the soils
captured through biophysical process mod-
els such as SWAT, economic adoption mod-
els alone could significantly overestimate the
effectiveness of these policies in reducing
nutrient runoffs. We also demonstrate the
importance of broadening the policy toolbox
and moving beyond the prevalent cost-share
payments to consider more cost-effective
policy instruments such as a hybrid fertil-
izer tax/cost-share payments program. This
revenue-neutral combination policy not only
induces fertilizer rate reductions, but also gen-
erates revenues that can be used for cost-share
payment programs. Despite still being second
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best,’ this makes it more cost-effective com-
pared to the cost-share payment programs.
Even the spatially targeted zonal policies,
while more cost-effective than uniform pay-
ments, are far less cost-effective than the hy-
brid policies.

Our article represents a step toward bet-
ter understanding the complex coupled hu-
man-natural systems of agricultural pollution
and water quality and ecosystem services;
however, it has several key limitations. First,
we do not conduct a complete cost-benefit
analysis, which would account for additional
private and public benefits and costs, includ-
ing potential foregone profits from reduced
fertilizer applications that may result in lower
yields, and the corresponding increases in
ecosystem service benefits from water quality
improvements in Lake Erie. Future research is
needed to incorporate benefits, such as Lake
Erie recreational anglers’ willingness to pay
(Zhang and Sohngen 2018), by combining
them with lake ecological models and non-
market valuation. Such studies could fully
examine the trade-off between fertilizer re-
duction and reduction in cost-share payments
when tax is sufficiently high. Second, in terms
of spatially targeted policies, we explore only
the zonal policies that target runoff hotspot
counties, but not at an individual field level,
which would be necessary to establish the
first-best policy benchmark. Third, future re-
search needs to evaluate how to mitigate the
potential bias resulting from the spatial and
temporal mismatch when the predicted an-
nual adoption behaviors are aggregated to the
county level and the biophysical models gen-
erate daily or monthly water quality simula-
tions at a much finer scale.
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