# Supplemental Information for the Final Report

# Watershed Assessment of Detroit River Phosphorus Loads to Lake Erie

Produced by the University of Michigan Water Center and available at: <u>myumi.ch/detroit-river</u>

May 2019

# Sections

| 1. | Summary of advisory group meetings and consultations ( <u>link to section</u> )  | 2  |
|----|----------------------------------------------------------------------------------|----|
| 2. | Data and methods for urban load assessment ( <u>link to section</u> )            | .6 |
| 3. | Data and model set-up for Soil & Water Assessment Tool (SWAT) (link to section)? | 11 |
| 4. | Stormwater Management Model (SWMM) details ( <u>link to section</u> )            | 27 |

# **Section 1. Summary of Advisory Group Meetings and Consultations**

# **Advisory Group Meetings**

This table outlines project advisory group meetings and provides examples of how the project team acted on feedback the group provided the meeting.

| Date                         | Meeting                                                              | Purpose                                                                                                                                                                                 | Examples of how team acted on advisory<br>group feedback                                                                                                                                                                                                                 |
|------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| March – June,<br>2016        | Phone interviews<br>with each<br>advisory group<br>member            | Documented areas of<br>expertise, topics of interest<br>and potential concerns<br>related to project and<br>process.                                                                    | <ul> <li>We prepared a comparison between<br/>Maumee and Detroit River.</li> <li>We developed maps and tables<br/>explaining data sources, data resolution,<br/>monitoring points and frequencies.</li> </ul>                                                            |
| May 5, 2016                  | In person<br>kick-off meeting<br>in Detroit, MI                      | Group identified their<br>highest priority questions to<br>guide research plans and<br>raised questions.                                                                                | <ul> <li>We decided to use a finer resolution for modeling.</li> <li>We pursued additional data and consults to better capture GLWA sewershed dynamics.</li> </ul>                                                                                                       |
| June 29 and<br>July 12, 2016 | Advisory group<br>conference calls                                   | Group reviewed the team's<br>assessment of how their<br>questions could or could not<br>be addressed through this<br>project. Group identified<br>related projects and data<br>sources. | <ul> <li>We developed guide to how forms of P are modeled in SWAT.</li> <li>We engaged Canadian researchers doing similar work.</li> <li>We engaged a social scientist to help analyze stakeholder interests and concerns.</li> </ul>                                    |
| January 18 –<br>19, 2017     | Annual In-person<br>advisory group<br>meeting in<br>Windsor, Ontario | Group reviewed modeling<br>approach and model set-up<br>decisions. Small groups<br>brainstormed specific<br>scenarios to address for<br>urban and agricultural areas.                   | <ul> <li>We developed a document outlining all agricultural management decisions used in baseline model set-up.</li> <li>We decided to focus urban modeling on issues related to green infrastructure type and placement, CSOs and system-wide flow controls.</li> </ul> |
| July 13, 2017                | Advisory group<br>conference call                                    | Group reviewed updates on<br>urban sources as well as<br>SWAT and SWMM<br>modeling                                                                                                      | <ul> <li>We reported loads for treated and<br/>untreated CSOs separately.</li> <li>We improved calculations of runoff<br/>contributions in combined sewer areas.</li> </ul>                                                                                              |
| October 5,<br>2017           | Advisory group<br>conference call                                    | Group reviewed results for<br>Lake St. Clair and ranked<br>practices to test through<br>initial scenario runs.                                                                          | <ul> <li>Lake St. Clair and mass balance<br/>modeling expanded to assess long term<br/>patterns of retention (source/sink).</li> <li>We focused on two specific GI practices<br/>of interest to group - permeable<br/>pavement and bioretention cells.</li> </ul>        |

| Date                      | Meeting                                                              | Purpose                                                                                                                                                                               | Examples of how team acted on advisory<br>group feedback                                                                                                                                                                                                                                                                                                                 |
|---------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| March 15<br>-16, 2018     | Annual In-person<br>Advisory group<br>meeting in<br>Windsor, Ontario | Group reviewed initial<br>results and provided<br>feedback on information<br>needs related to current<br>policy context, and<br>brainstormed ways to build<br>more complex scenarios. | <ul> <li>We improved data visualizations.</li> <li>We made controlled drainage scenarios more realistic.</li> <li>We added scenarios about wetlands and urban trees.</li> <li>We showed scenario results at a wider range of practice adoption rates.</li> </ul>                                                                                                         |
| August 9,<br>2018         | Advisory group<br>conference call                                    | Group reviewed recent<br>urban modeling results and<br>discussed proposed<br>products, applications and<br>audiences                                                                  | <ul> <li>We decided to estimate costs for BMP scenarios.</li> <li>We developed CSO basin factsheets.</li> </ul>                                                                                                                                                                                                                                                          |
| October 11,<br>2018       | Advisory group<br>conference call                                    | Group reviewed recent<br>modeling results for<br>watershed and Lake St Clair<br>and discussed how to best<br>share results to maximize<br>benefit to policy.                          | <ul> <li>We improved terminology and<br/>messaging for mass balance results.</li> <li>We improved documentation of baseline<br/>model decisions.</li> <li>We panned briefings for MI DAP team<br/>and Annex 4 groups.</li> </ul>                                                                                                                                         |
| November 27<br>– 28, 2018 | Annual In-person<br>Advisory group<br>meeting in Ann<br>Arbor, MI    | Group reviewed final<br>results and discussed how to<br>best present and explain<br>findings.                                                                                         | <ul> <li>As requested, we provided a table of<br/>load estimates and concentrations for<br/>different sources.</li> <li>We more deliberately assessed long term<br/>trends for loads and separated different<br/>components of Lake Huron load.</li> <li>We added additional context in final<br/>report about background and<br/>implications for Lake Erie.</li> </ul> |
| April 8, 2019             | Advisory group<br>conference call                                    | Group provided feedback<br>on draft copy of final<br>project report.                                                                                                                  | <ul> <li>We shared an overview of written<br/>feedback provided to date.</li> <li>We found ways to clarify how numbers<br/>are reported.</li> <li>Group offered ideas for creating shorter,<br/>targeted summaries and presenting to<br/>additional groups.</li> </ul>                                                                                                   |

# **Issue-Specific Consultation Meetings**

We organized a number of smaller meetings to solicit input about specific topics. Each included a few advisory group members as well as others with specific expertise and experience relative to the topic being discussed. This list does not include one-on-one conversations nor invited presentations that were not designed to be feedback opportunities.

| Date                 | Meeting description                                                                        | Key outcomes from meeting                                                                                                                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| October 19,<br>2016  | Conference call with<br>researchers working on Lake<br>St. Clair water quality topics      | <ul> <li>New connections formed between NOAA and Canadian researchers to advance HAB forecasting</li> <li>Identified data sharing opportunities to improve Lake St. Clair and mass balance modeling</li> </ul>                                                                                                                       |
| December<br>12, 2016 | Conference call with modelers<br>working in agricultural<br>watersheds                     | <ul> <li>Explored potential collaboration opportunities</li> <li>Identified new sources of data for Ontario ag practices</li> </ul>                                                                                                                                                                                                  |
| May 3, 2017          | Consultation with MDEQ<br>about CSO and point source<br>data, Lansing MI                   | <ul> <li>We developed clearer diagrams of wet and dry weather<br/>discharge pathways from plant and improved calculations of<br/>US urban loads from GLWA facility and CSO basins.</li> <li>Improved our interpretations of state and federal point source<br/>reports</li> </ul>                                                    |
| May 3, 2017          | Consultation with Michigan's<br>Domestic Action Plan team,<br>Lansing MI                   | <ul> <li>We began separating treated and untreated CSO volumes and loads in all future graphs.</li> <li>We improved runoff calculations in urban areas.</li> <li>We explored ways to model wetland restoration/construction in SWAT.</li> </ul>                                                                                      |
| May 3, 2017          | Consultation with Michigan<br>agricultural experts, Lansing<br>MI                          | <ul> <li>Group confirmed that most baseline assumptions of ag practices were reasonable.</li> <li>Farm Bureau decided to conduct survey about tillage practices to provide more current data for model.</li> </ul>                                                                                                                   |
| July 10,<br>2017     | Consultation with agricultural experts, Woodstock, Ontario                                 | <ul> <li>Group confirmed that most baseline assumptions of ag practices in Ontario were reasonable.</li> <li>OMAFRA provided more accurate specifications for tile drainage in Ontario.</li> <li>OMAFRA provided more accurate estimates of placement and rate of manure application from permitted livestock operations.</li> </ul> |
| July 10,<br>2017     | Consultation with modelers<br>working in agricultural<br>watersheds, Woodstock,<br>Ontario | • Participants shared what they were learning about agricultural BMPs, including adoption rates, impacts for P loss pathways, and cost estimates.                                                                                                                                                                                    |
| October 3,<br>2017   | Consultation with MDEQ and GLWA re: urban P loads                                          | <ul> <li>Group confirmed GLWA facility load estimates were reasonable.</li> <li>GLWA followed up and shared detailed data about discharge from facility.</li> </ul>                                                                                                                                                                  |

| Date                  | Meeting description                                                                       | Key outcomes from meeting                                                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| October 11,<br>2017   | Tour of the Great Lakes Water<br>Authority Water Resource<br>Recovery Facility in Detroit | <ul> <li>We learned more about how wet and dry weather flows are handled at basins and treatment plant.</li> <li>We learned more about operational changes that led to P reductions, as well as planned updates.</li> </ul>                                         |
| October 12,<br>2017   | Consultation with TNC and<br>Detroit Future Cities                                        | <ul> <li>We learned more about GI planning efforts and key questions.</li> <li>We received data layers about vacant land to use in maps and modeling.</li> </ul>                                                                                                    |
| September<br>17, 2018 | Consultation with agricultural experts, Lansing MI                                        | <ul> <li>We conducted additional analyses to help explain differences<br/>between P loss from crop lands in the US and Canada.</li> <li>We refined explanations for bundled scenario results.</li> </ul>                                                            |
| November<br>26, 2018  | Project briefing for Michigan's<br>Domestic Action Team                                   | <ul> <li>Shared results and discussed implications for targets and planning.</li> <li>We learned more about sediment issues in southeastern corner of Lake Huron.</li> </ul>                                                                                        |
| April 3, 2019         | Project briefing for Annex 4<br>Adaptive Management<br>Subcommittee                       | <ul> <li>Shared results related to load estimates, the role of Lake St.<br/>Clair and the Lake Huron contributions</li> <li>We learned more about about factors that could lead to<br/>resuspension of sediment and improved clarity of<br/>terminology.</li> </ul> |
| April 3, 2019         | Consultation with agricultural experts, Lansing MI                                        | <ul> <li>Group offered suggestions for adding context to discussion<br/>about BMP effectiveness in report.</li> <li>Group identified points needing clarification in report.</li> </ul>                                                                             |

# Section 2. Data and methods for urban load assessment

#### **Data Sources**

This table outlines the sources and details for data used in urban sources assessment load calculations (Chapter 4 of the project report).

| Urban<br>Study<br>Area   | Data source                                                                                  | Source<br>type | Data location                                                                                             | Data type                                      | Temporal resolution |
|--------------------------|----------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|
|                          | Great Lakes<br>Water Authority                                                               | Point source   | Regular dry-weather outfall from<br>the WRRF (49B)<br>Wet-weather outfalls from the<br>WRRF (49A and 50A) | Discharge<br>Total phosphorus<br>concentration | Daily               |
|                          | Great Lakes<br>Water Authority                                                               | CSO            | All outfalls from GLWA RTBs<br>and S/D facilities (n=7)                                                   | Discharge<br>Total phosphorus<br>concentration | Daily               |
| Michigan                 | EPA Enforcement and<br>Compliance History Online <sup>1</sup>                                | Point source   | All (n=9) point source outfalls<br>except the WRRF                                                        | Discharge<br>Total phosphorus<br>concentration | Monthly<br>average  |
|                          | EPA Enforcement and<br>Compliance History Online                                             |                | All treated CSO outfalls except those operated by GLWA (n=16)                                             | Total phosphorus concentration                 | Monthly<br>average  |
|                          | MDEQ CSO/SSO Database <sup>2</sup> CSO                                                       |                | All treated CSO outfalls except those operated by GLWA (n=16)                                             | Discharge                                      | Event-based         |
|                          | MiWaters <sup>3</sup> CSO                                                                    |                | All (n=102) CSO outfalls                                                                                  | Outfall locations<br>Treatment level           | NA                  |
| Windsor<br>and<br>London | Ministry of the Environment<br>and Climate Change <sup>4</sup>                               | Point Source   | All (n=9) point source outfalls                                                                           | Discharge                                      | Monthly total       |
|                          | Ministry of the Environment<br>and Climate Change                                            | Point Source   | All (n=9) point source outfalls                                                                           | Total phosphorus concentration                 | Monthly<br>average  |
|                          | Ministry of the Environment<br>and Climate Change Point source<br>(wet weather<br>discharge) |                | Seven bypass outfalls                                                                                     | Discharge                                      | Monthly total       |

1. <u>https://echo.epa.gov/resources/general-info/loading-tool-modernization</u>

2. MDEQ CSO/SSO database was available at <u>http://www.deq.state.mi.us/csosso/</u> at time of study. This database has since moved to the MiWaters database (link below).

3. https://miwaters.deq.state.mi.us

4. https://www.ontario.ca/data/industrial-wastewater-discharges

# **List of Point Sources**

The table lists the point sources that are permitted to discharge phosphorus in our three urban study areas - southeast Michigan urban areas, and London and Windsor in Ontario.

| Urban study<br>area |    | Facility ID | Facility Name                                                   |
|---------------------|----|-------------|-----------------------------------------------------------------|
|                     | 1  | MI0002313   | US Steel Corporation Great Lakes Works                          |
|                     | 2  | MI0021156   | Wyandotte Wastewater Treatment Plant                            |
|                     | 3  | MI0021164   | City of Trenton Wastewater Treatment Plant                      |
|                     | 4  | MI0022802   | Great Lakes Water Authority Water Resource Recovery Facility    |
| Michigan            | 5  | MI0023647   | City of Mount Clemens Wastewater Treatment Plant                |
|                     | 6  | MI0023825   | Oakland County - Pontiac Wastewater Treatment Plant             |
|                     | 7  | MI0024287   | Oakland County - Walled Lake/Novi Wastewater Treatment Plant    |
|                     | 8  | MI0024295   | Warren Wastewater Treatment Plant                               |
|                     | 9  | MI0038105   | Wyandotte Electric Plant                                        |
|                     | 10 | MI0056235   | Dearborn Industrial Generation Plant                            |
|                     |    |             |                                                                 |
|                     | 1  | M120000836  | Pottersburg Water Pollution Control Plant                       |
|                     | 2  | M120000845  | Vauxhall Water Pollution Control Plant                          |
| London              | 3  | M120000854  | Oxford Water Pollution Control Plant                            |
|                     | 4  | M120000863  | Greenway Water Pollution Control Plant                          |
|                     | 5  | M120000872  | Adelaide Water Pollution Control Plant                          |
|                     |    |             |                                                                 |
|                     | 1  | M0000020107 | Ford Motor Company of Canada, Windsor Casting and Engine Plants |
| Windsor             | 2  | M0000020107 | K+S Windsor Salt Ltd. – Evaporator Plant                        |
|                     | 3  | M120001096  | Little River Water Pollution Control Plant                      |
|                     | 4  | M120001103  | Lou Romano Water Reclamation Plant                              |

# CSO Outfalls in Michigan Urban Study Area

This table lists the Michigan urban study area CSO outfalls that had events between water years 2013-2016 according to data compiled from the MDEQ online CSO/SSO database available at <a href="http://www.deq.state.mi.us/csosso/">http://www.deq.state.mi.us/csosso/</a> at the time of study. Between the time analyses were conducted and publication of this report, this database was relocated to miwaters.deq.state.mi.us. Total TP loads, volumes, and number of events are sums for the period 2013-2016. There are 23 treated CSO outfalls and 79 untreated outfalls. There are additional CSO outfalls in the study area, but they did not have discharge events during the study period and so are not included here.

| Count | NPDES ID  | Outfall<br>Number | Treated or<br>untreated? | TP (ka)  | Total<br>volume<br>(MG) | Number<br>of<br>events |
|-------|-----------|-------------------|--------------------------|----------|-------------------------|------------------------|
| 1     | MI0022802 | 101               | Treated                  | 18.616.3 | 6.520.4                 | 62                     |
| 2     | MI0022802 | 104               | Treated                  | 93.297.8 | 26.535.1                | 68                     |
| 3     | MI0022802 | 105               | Treated                  | 1.277.8  | 164.6                   | 7                      |
| 4     | MI0022802 | 106               | Treated                  | 1,234.1  | 290.2                   | 44                     |
| 5     | MI0022802 | 107               | Treated                  | 12,342.1 | 4,457.8                 | 51                     |
| 6     | MI0022802 | 108               | Treated                  | 43.7     | 18.1                    | 20                     |
| 7     | MI0022802 | 109               | Treated                  | 904.9    | 507.4                   | 22                     |
| 8     | MI0022802 | 11                | Untreated                | 148.6    | 31.4                    | 15                     |
| 9     | MI0022802 | 12                | Untreated                | 3,377.5  | 713.8                   | 12                     |
| 10    | MI0022802 | 16                | Untreated                | 337.9    | 71.4                    | 30                     |
| 11    | MI0022802 | 17                | Untreated                | 4.1      | 0.9                     | 3                      |
| 12    | MI0022802 | 18                | Untreated                | 1.8      | 0.4                     | 2                      |
| 13    | MI0022802 | 19                | Untreated                | 458.1    | 96.8                    | 20                     |
| 14    | MI0022802 | 20                | Untreated                | 33.9     | 7.2                     | 5                      |
| 15    | MI0022802 | 21                | Untreated                | 273.2    | 57.7                    | 13                     |
| 16    | MI0022802 | 22                | Untreated                | 1,141.0  | 241.1                   | 22                     |
| 17    | MI0022802 | 23                | Untreated                | 190.4    | 40.2                    | 2                      |
| 18    | MI0022802 | 25                | Untreated                | 1,984.2  | 419.3                   | 15                     |
| 19    | MI0022802 | 26                | Untreated                | 347.5    | 73.4                    | 9                      |
| 20    | MI0022802 | 27                | Untreated                | 174.4    | 36.9                    | 4                      |
| 21    | MI0022802 | 28                | Untreated                | 95.4     | 20.2                    | 10                     |
| 22    | MI0022802 | 29                | Untreated                | 1.8      | 0.4                     | 1                      |
| 23    | MI0022802 | 30                | Untreated                | 2.6      | 0.5                     | 1                      |
| 24    | MI0022802 | 31                | Untreated                | 1,431.4  | 302.5                   | 15                     |
| 25    | MI0022802 | 32                | Untreated                | 5.7      | 1.2                     | 1                      |
| 26    | MI0022802 | 33                | Untreated                | 152.4    | 32.2                    | 20                     |
| 27    | MI0022802 | 34                | Untreated                | 0.4      | 0.1                     | 1                      |
| 28    | MI0022802 | 37                | Untreated                | 8.3      | 1.8                     | 1                      |
| 29    | MI0022802 | 38                | Untreated                | 3,460.1  | 731.2                   | 8                      |
| 30    | MI0022802 | 39                | Untreated                | 17.4     | 3.7                     | 2                      |
| 31    | MI0022802 | 40                | Untreated                | 162.3    | 34.3                    | 3                      |
| 32    | MI0022802 | 42                | Untreated                | 29.7     | 6.3                     | 1                      |
| 33    | MI0022802 | 43                | Untreated                | 0.0      | 0.0                     | 1                      |
| 34    | MI0022802 | 44                | Untreated                | 20.3     | 4.3                     | 2                      |
| 35    | MI0022802 | 46                | Untreated                | 1.4      | 0.3                     | 3                      |
| 36    | MI0022802 | 5                 | Untreated                | 566.5    | 119.7                   | 9                      |
| 37    | MI0022802 | 54                | Untreated                | 4,998,4  | 1.056.4                 | 5                      |

| Count | NPDES ID    | Outfall<br>Number | Treated or untreated? | TP (kg)  | Total<br>volume<br>(MG) | Number<br>of<br>events |
|-------|-------------|-------------------|-----------------------|----------|-------------------------|------------------------|
| 38    | MI0022802   | 59                | Untreated             | 1,210.0  | 255.7                   | 30                     |
| 39    | MI0022802   | 6                 | Untreated             | 7.3      | 1.6                     | 1                      |
| 40    | MI0022802   | 60                | Untreated             | 355.5    | 75.1                    | 2                      |
| 41    | MI0022802   | 61                | Untreated             | 2,837.9  | 599.8                   | 19                     |
| 42    | MI0022802   | 62                | Untreated             | 62.4     | 13.2                    | 14                     |
| 43    | MI0022802   | 63                | Untreated             | 4.4      | 0.9                     | 23                     |
| 44    | MI0022802   | 64                | Untreated             | 1,779.9  | 376.2                   | 32                     |
| 45    | MI0022802   | 65                | Untreated             | 1,319.5  | 278.9                   | 17                     |
| 46    | MI0022802   | 66                | Untreated             | 25.8     | 5.5                     | 9                      |
| 47    | MI0022802   | 67                | Untreated             | 58.1     | 12.3                    | 16                     |
| 48    | MI0022802   | 68                | Untreated             | 13.8     | 2.9                     | 7                      |
| 49    | MI0022802   | 69                | Untreated             | 37.3     | 7.9                     | 4                      |
| 50    | MI0022802   | 7                 | Untreated             | 574.2    | 121.4                   | 39                     |
| 51    | MI0022802   | 72                | Untreated             | 49.7     | 10.5                    | 10                     |
| 52    | MI0022802   | 74                | Untreated             | 2,182.2  | 461.2                   | 19                     |
| 53    | MI0022802   | 75                | Untreated             | 37.0     | 7.8                     | 9                      |
| 54    | MI0022802   | 77                | Untreated             | 27.1     | 5.7                     | 2                      |
| 55    | MI0022802   | 79                | Untreated             | 243.3    | 51.4                    | 11                     |
| 56    | MI0022802   | 8                 | Untreated             | 71.3     | 15.1                    | 2                      |
| 57    | MI0022802   | 9                 | Untreated             | 2,450.9  | 518.0                   | 30                     |
| 58    | MI0023647   | 3                 | Treated               | 466.5    | 130.3                   | 10                     |
| 59    | MI0025453   | 1                 | Treated               | 3,127.0  | 1,020.6                 | 28                     |
| 60    | MI0025500   | 1                 | Treated               | 3,078.9  | 1,612.0                 | 55                     |
| 61    | MI0025534   | 101               | Treated               | 75.5     | 50.8                    | 8                      |
| 62    | MI0025542   | 1                 | Untreated             | 435.9    | 92.1                    | 191                    |
| 63    | MI0025542   | 106               | Treated               | 233.0    | 89.3                    | 10                     |
| 64    | MI0025542   | 108               | Treated               | 228.8    | 104.6                   | 5                      |
| 65    | MI0025542   | 117               | Treated               | 3,328.8  | 963.4                   | 39                     |
| 66    | MI0025542   | 13                | Untreated             | 3,515.6  | 743.0                   | 191                    |
| 67    | MI0025542   | 14                | Untreated             | 2,875.2  | 607.6                   | 108                    |
| 68    | MI0025542   | 15                | Untreated             | 0.2      | 0.0                     | 1                      |
| 69    | MI0025542   | 16                | Untreated             | 234.5    | 49.6                    | 3                      |
| 70    | MI0025542   | 17                | Untreated             | 45.0     | 9.5                     | 1                      |
| 71    | MI0025542   | 2                 | Untreated             | 26.1     | 5.5                     | 88                     |
| 72    | MI0025542   | 3                 | Untreated             | 1,576.2  | 333.1                   | 191                    |
| 73    | MI0025542   | 4                 | Untreated             | 902.1    | 190.6                   | 108                    |
| 74    | MI0025542   | 5                 | Untreated             | 95.1     | 20.1                    | 53                     |
| /5    | MI0025585   | 1                 | Treated               | 1,240.2  | 680.7                   | 29                     |
| 76    | MI0025585   | 2                 | Treated               | 210.8    | 118.5                   | 3                      |
| 70    | MI0026115   | 1                 | Treated               | 11,006.2 | 5,981.2                 | 30                     |
| 78    | MI0028819   | 101               | Treated               | 211.1    | 91.0                    | 22                     |
| /9    | WI0036072   | 1                 |                       | 15,575.9 | 4,078.3                 | 83                     |
| 80    | WI0030072   | 402               | Treated               | 4,294.7  | 901.0                   | 41                     |
| 01    | MI0049046   | 103               | Tracted               | 02.2     | 91.9<br>60.4            | 15                     |
| 02    | 11110040040 | 102               | riealed               | 92.3     | 02.1                    | Э                      |

| Count | NPDES ID  | Outfall<br>Number | Treated or untreated? | TP (kg) | Total<br>volume<br>(MG) | Number<br>of<br>events |
|-------|-----------|-------------------|-----------------------|---------|-------------------------|------------------------|
| 83    | MI0051462 | L41               | Untreated             | 691.5   | 146.1                   | 61                     |
| 84    | MI0051462 | L42               | Untreated             | 55.4    | 11.7                    | 5                      |
| 85    | MI0051471 | 1                 | Treated               | 229.8   | 110.5                   | 22                     |
| 86    | MI0051471 | 10                | Untreated             | 925.9   | 195.7                   | 60                     |
| 87    | MI0051471 | 9                 | Untreated             | 149.5   | 31.6                    | 12                     |
| 88    | MI0051471 | L46               | Untreated             | 240.9   | 50.9                    | 12                     |
| 89    | MI0051489 | 1                 | Treated               | 71.5    | 41.7                    | 10                     |
| 90    | MI0051489 | L43               | Untreated             | 78.7    | 16.6                    | 14                     |
| 91    | MI0051489 | M13               | Untreated             | 63.5    | 13.4                    | 13                     |
| 92    | MI0051489 | M14               | Untreated             | 48.9    | 10.3                    | 12                     |
| 93    | MI0051489 | U1                | Untreated             | 40.9    | 8.6                     | 9                      |
| 94    | MI0051535 | 1                 | Treated               | 32.7    | 14.9                    | 8                      |
| 95    | MI0051535 | U10               | Untreated             | 110.6   | 23.4                    | 4                      |
| 96    | MI0051535 | U11               | Untreated             | 75.5    | 16.0                    | 6                      |
| 97    | MI0051535 | U2                | Untreated             | 18.1    | 3.8                     | 3                      |
| 98    | MI0051535 | U3                | Untreated             | 64.2    | 13.6                    | 8                      |
| 99    | MI0051535 | U4                | Untreated             | 0.5     | 0.1                     | 1                      |
| 100   | MI0051535 | U5                | Untreated             | 143.3   | 30.3                    | 5                      |
| 101   | MI0051535 | U9                | Untreated             | 188.8   | 39.9                    | 4                      |
| 102   | MI0051829 | 45A               | Untreated             | 166.4   | 35.2                    | 29                     |

# Section 3. Data and Model Set-up for Soil & Water Assessment Tool (SWAT)

This section summarizes data and model set-up assumptions that were used to develop a Soil and Water Assessment Tool (SWAT) model for the St. Clair – Detroit River System watershed. This transboundary watershed covers an area of 19,040 km<sup>2</sup>, of which 40% is in MI, US and the other 60% in Ontario, Canada. About half of the watershed is agricultural and the rest is urban, forest, grassland, waterbody, or wetlands.

This model was based on SWAT 2012 revision 635, with some modifications to enable more fine scale resolution for model input data, as described by articles by Kalcic (2016) and Teshager (2015). Additional modeling details, including calibration and validation results as well as methods for scenario analyses, are provided in two journal articles and the associated online supplemental information. In press and published articles are accessible on the project website: www.myumi.ch/detroit-river

- Dagnew, A., Scavia, D., Wang, Y., Muenich, R., Long, C., Kalcic, M. 2019a. Modeling Flow, Nutrient and Sediment Delivery from a Large International Watershed using a Field-Scale SWAT model. Journal of the American Water Resources Association, in press.
- Dagnew, A., Scavia, D., Wang, Y., Muenich, R., Kalcic., M. 2019b. Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. Journal of Great Lakes Research, in press.

#### Topics Covered in this Section (click section title to jump to the section)

#### Landscape Data

- Topography
- Soil
- Land Use and Land Cover

#### **Agricultural Practices**

- Crop Rotations
- Mineral Fertilizer Application
- Manure Application
- Tillage
- Tile Drain Implementation

#### **Other Model Inputs**

- Industrial and Municipal Point Sources
- Reservoirs

#### **Calibration and Validation Process**

- Data Sources
- Calibration/Validation Locations
- Simulation Periods
- Calibration/Validation Time Steps

#### References

# Landscape Data

## Topography

#### Sources:

- Digital Elevation Model (DEM) 30m x 30m resolution
- USGS- The National Map (<u>https://viewer.nationalmap.gov/basic/</u>)

#### **Processes:**

- Based on the DEM, SWAT divides the watershed into subwatersheds (subbasins) as shown below based on either a stream area threshold, or burned-in stream locations.
- For this project, 800 subbasins (figure below) were created with average areas of ~ 24km<sup>2</sup> by applying a stream threshold and manually inserting additional outlets. These subbasins are the smallest resolution possible for extracting modeling results.
  - The size of the subbasins, which depends on the threshold value used and the location and number outlets inserted manually, is determined based on the following premises.
    - Potential model comparisons with other studies in the area.
    - The potential need of smaller subbasins in urban areas for better representation and scenario analysis.
    - Once the model is developed, it is always possible to aggregate results at larger scale than the model subbasins. However, if results are needed at a scale smaller than a subbasin in the model, the model may need to be re-setup. Hence, the sizes of subbasins were kept relatively small in this model setup.



### Soil

#### Sources:

- USDA-NRCS's SSURGO data for the US side (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>)
- AAFC's Soil Landscape of Canada version 3.2 for the Canadian side (<u>http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html</u>)

#### **Processes:**

- Soil data were downloaded as shapefiles from the respective sources.
- Data from the two countries were merged and the shape file was converted to 30m x 30m raster data to match the LULC and DEM data resolution.
- The resulting soil data and HRU boundaries were then used to extract dominant soil type for each HRU.
  - The dominant soil type is the soil type that covers the largest area of all the soil types with in the HRU boundary.
- The SWAT SSURGO database which currently contains only US soils was then updated to include Canadian soil data for the watershed.
  - Some of Canadian soil parameters were calculated to match SWAT-required inputs. (For more details, see Table 1 in Dagnew et al. 2019a)



# Land Use and Land Cover

#### Sources:

- NASS Crop Data Layer for US side of the watershed (2011-2015) (<u>https://nassgeodata.gmu.edu/CropScape/</u>)
- Government of Canada Annual Crop Inventory for Canada side of the watershed (2011-2015) (<u>http://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9</u>)

#### **Processes:**

- Data from the two countries were merged to generate land use land cover (LULC) data at 30 m x 30 m resolution for St. Clair-Detroit River watershed for years 2011 2015.
- Canadian crop code numbers were changed to their US equivalent
- Creating HRU (Hydrologic Response Unit) boundaries which are the smallest spatial units of modeling in SWAT:
  - In this model, each subbasin is divided into HRUs which are homogeneous areas of land use, soil and slope.
    - While HRUs are usually percentage areas of a subbasin in standard SWAT model, in this project, the road network and 2015 LULC data were used to pre-determine HRUs with unique boundaries (see Teshager et al. 2016 for details). This process was adapted to ease certain input data processing, such as rotation, tile drainage, manure application, etc.
  - Subsequently, 27,751 HRUs with unique boundaries were created for this project. The average area for the HRUs is 69ha. A sample of HRUs in a subbasin overlaid on a satellite data is shown in the figure below to demonstrate how HRUs look compared to actual fields or farms.



# **Agricultural Practices**

### **Crop Rotations**

#### Sources:

• Land cover and land use data, as described above.

#### **Processes:**

- Determining crop rotations in each HRU
  - The 2011-2015 LULC data was used to generate crop rotations for each 30mX30m grids by overlaying each year to determine pixel-by-pixel rotations. This rotation data was then overlaid by the HRU boundaries to extract the dominant rotation for each HRU.
  - For specific information on crop rotations by county and subwatershed, see supporting information for Dagnew et al 2019a.
  - Distribution of estimated crop rotations is shown in map below. Crop codes: C= corn, S= soybeans, W = winter wheat



Table shows the percentage of cropland area covered with the different types of crop rotations divided between US and Canada (C = corn, S = soybeans, W = winter wheat). Taken from Dagnew et al. 2019a

| Crop                | % (    | rea   |         |
|---------------------|--------|-------|---------|
| rotation            | Canada | US    | Overall |
| CC                  | 8.4    | 1.6   | 7.1     |
| $\mathrm{CS}^*$     | 25.4   | 35.5  | 27.3    |
| SS                  | 13.5   | 13.1  | 13.4    |
| $\mathrm{CSW}^{**}$ | 42.8   | 45.4  | 43.3    |
| SW                  | 0.4    | 0.3   | 0.4     |
| SSW                 | 9.5    | 4.1   | 8.5     |
| Total               | 100.0  | 100.0 | 100.0   |

\*Includes both CS and SC rotations

\*\*Includes CSW or SWC or WCS rotations

# **Mineral Fertilizer Application**

Sources:

- International Plant Nutrition Institute (IPNI) Nutrient Use Geographic Information System (NuGIS) has county level nutrient estimates for the US side (<u>http://nugis.ipni.net/About%20NuGIS/</u>)
- Fertilizer Canada has provincial level estimates for the Canadian side (<u>http://www5.statcan.gc.ca/cansim/a29?lang=eng&groupid=001&p2=17</u>)

#### **Processes/Assumptions:**

- Counties from both countries that are crossed by the watershed boundary were identified (7 in MI, US and 8 in ON, Canada)
- Michigan
  - The total cropland areas in each county were calculated.
  - The total cropland areas of each county and cropland areas in each county within the boundary of the watershed were identified.
  - Ratios of cropland areas of each county in the watershed to the total cropland areas in the county were calculated.
  - The total amount of fertilizer applied in each county was then multiplied by these ratios to calculate the total amount of fertilizer applied in each county with in the watershed.
  - Finally, fertilizer application rates for corn, soybeans and winter wheat were assumed based on estimated state values from USDA-ERS (<u>https://data.ers.usda.gov/reports.aspx?ID=46940</u>). These rates were scaled to better match the total amount of fertilizer applied in each county within the watershed.
- Ontario
  - A similar process was followed for Canadian agricultural lands except that currently we only have one value for the entire province.
    - Total Ontario fertilizer amount was multiplied by the ratio of cropland area in the Canadian side of the watershed to the total cropland area of Ontario.
    - The resulting value was then distributed to each county in the watershed based on areas of cropland in each county with in the watershed.
    - Rates are then estimated for each crop type and adjusted to match the total fertilizer amount in each county in the watershed.
- Even though reports show the occurrence of fertilizer application on some pasture/grasslands, we assumed no fertilizer application on pasture/grassland.
- Accordingly, the following are nitrogen and phosphorous average fertilizer application rates for each county calculated based on reported nutrient values.

The table below shows the ranges of nitrogen and phosphorus fertilizer application rates in the baseline model for each region of US (shaded) and Canadian sub-watersheds (taken from Dagnew et al. 2019b)

| Cub            | Cropland           | Nitrogen fertilizer application rate |             |                 | Phosphorus fertilizer |                          |                 |  |
|----------------|--------------------|--------------------------------------|-------------|-----------------|-----------------------|--------------------------|-----------------|--|
| watershed      | Area (%            |                                      | (kg/ha)     |                 |                       | application rate (kg/ha) |                 |  |
| name           | sub-<br>watershed) | Corn                                 | Soybeans    | Winter<br>wheat | Corn                  | Soybeans                 | Winter<br>wheat |  |
| St. Clair      | 50                 | 84.0 - 125.9                         | 9.5 - 16.4  | 62.2 - 89.7     | 5.9 - 10.1            | 4.8 - 6.5                | 5.7 - 10.9      |  |
| Clinton        | 10                 | 82.5 - 112.7                         | 9.5 - 14.7  | 62.2 - 89.7     | 5.9 - 8.8             | 4.8 - 6.3                | 5.7 - 7.8       |  |
| Detroit        | 2                  | 118.8 - 122.5                        | 23.8 - 29.4 | 90.3 - 93.1     | 7.6 - 9.8             | 6.7 - 7.8                | 7.6 - 9.8       |  |
| Lake St. Clair | 9                  | 84.0 - 107.8                         | 9.5 - 10.9  | 62.2 - 89.7     | 6.0 - 7.8             | 4.8 - 6.1                | 6.0 - 7.4       |  |
| Sydenham       | 82                 | 132.0 - 168.1                        | 3.7 - 4.5   | 82.3 - 93.5     | 23.2 - 44.8           | 7.4 - 11.3               | 19.4 - 22.0     |  |
| Thames         | 75                 | 127.4 - 173.8                        | 3.6 - 4.9   | 82.3 - 93.5     | 22.8 - 44.8           | 9.1 - 13.7               | 18.3 - 24.4     |  |
| Essex          | 79                 | 128.3 - 154.3                        | 3.8 - 4.0   | 80.9 - 85.0     | 23.8 - 33.9           | 7.6 - 8.0                | 17.1 - 18.0     |  |

The following two figures show the distribution of estimated average fertilizer application rates at HRU level for nitrogen and phosphorous, respectively.



# **Manure Application**

#### Sources:

- USDA-NASS 2012 census county level animal counts (<u>https://quickstats.nass.usda.gov/?source\_desc=CENSUS</u>)
- OMAFRA, Agriculture and Strategic Policy Branch, 2011 county level census (<u>http://www.omafra.gov.on.ca/english/stats/county/index.html</u>)

#### **Processes/assumptions:**

- Livestock (dairy, beef, swine, sheep, goat, broiler, layer, turkey) counts for all 15 counties of the watershed were downloaded from their respective sources and compiled.
- Depending on the type of livestock, the amount of dry manure produced per livestock is calculated using a standard manure production values per 1000 kg live animal and typical live animal masses provided in SWAT 2012 Input/Output documentation manual (Appendix A, page 610, available here: https://swat.tamu.edu/docs/). As a result, the total mass of dry manure produced for each livestock type per county was calculated using these standards, for both US and Canada portions of study area.
- The amount of manure from each livestock type in each county was then divided in to recoverable and non-recoverable portion using Kellogg et al. (2000) values.
  - Recoverable manure by definition is manure available for land application. Hence, this portion of the manure was assumed to be applied in cropland areas.
  - The non-recoverable portion was assumed to be applied in pasture lands.
- Ratios of cropland/pasture areas of each county in the watershed to the total cropland/pasture areas in the county were calculated.
- The total amount of recoverable manure in each county was then multiplied by these ratios to calculate the amount of manure available for cropland/pasture in each county with in the watershed.
  - Manure produced in a county was assumed to end up either in a cropland or pasture area within the county.
  - The same amount of manure is applied each year
- Where do we apply manure?
  - For Ontario, spatial distribution of manure application was provided by OMAFRA (K. McKague, personal communication, 12/2017) as locations (points) of animal farms and field areas that receive manure from each animal farm without explicit indication of which field(s).
  - For Michigan, recoverable and non-recoverable portions of the manure are applied uniformly on all crop lands and pasture lands, respectively, in a county as shown below. Because of this assumption and the overall lower numbers of livestock, solid manure application rates in the US were lower (85-670 6 kg/ha for dairy, 8-50 kg/ha for Beef and 1-35 kg/ha for swine) than in Canada (345-1082 kg/ha for dairy, 261-695 kg/ha for Beef and 667-1556 kg/ha for swine).



- How do we apply manure?
  - Fertilizer and manure were assumed to be broadcasted on the surface and incorporated through tillage practices for all crops and were applied in spring before planting of corn and soybeans.
  - SWAT changes manure application rates into nutrients using the following values of nutrient fractions in manures (See table below and SWAT 2012 Input/Output, Appendix A, page 610, available here: https://swat.tamu.edu/docs/).

| Name                 | Name Code | Min-N     | Min-P | Org-N | Org-P | NH <sub>3</sub> -N/<br>Min N |
|----------------------|-----------|-----------|-------|-------|-------|------------------------------|
| . vanic              | Name Coue | 101111-11 |       | orgin | orgen |                              |
| Dairy-Fresh Manure   | DAIRY-FR  | 0.007     | 0.005 | 0.031 | 0.003 | 0.990                        |
| Beef-Fresh Manure    | BEEF-FR   | 0.010     | 0.004 | 0.030 | 0.007 | 0.990                        |
| Veal-Fresh Manure    | VEAL-FR   | 0.023     | 0.006 | 0.029 | 0.007 | 0.990                        |
| Swine-Fresh Manure   | SWINE-FR  | 0.026     | 0.011 | 0.021 | 0.005 | 0.990                        |
| Sheep-Fresh Manure   | SHEEP-FR  | 0.014     | 0.003 | 0.024 | 0.005 | 0.990                        |
| Goat-Fresh Manure    | GOAT-FR   | 0.013     | 0.003 | 0.022 | 0.005 | 0.990                        |
| Horse-Fresh Manure   | HORSE-FR  | 0.006     | 0.001 | 0.014 | 0.003 | 0.990                        |
| Layer-Fresh Manure   | LAYER-FR  | 0.013     | 0.006 | 0.040 | 0.013 | 0.990                        |
| Broiler-Fresh Manure | BROIL-FR  | 0.010     | 0.004 | 0.040 | 0.010 | 0.990                        |
| Turkey-Fresh Manure  | TURK-FR   | 0.007     | 0.003 | 0.045 | 0.016 | 0.990                        |
| Duck-Fresh Manure    | DUCK-FR   | 0.023     | 0.008 | 0.025 | 0.009 | 0.990                        |

# Tillage

Sources:

- USGS tillage practices aggregated by HUC8 per crop type for 2004 (<u>https://water.usgs.gov/lookup/getgislist</u>)
- Statistics Canada 2011, county/sub-county level tillage practices (<u>http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=0040205&p2=33</u>)

#### Processes/assumptions:

- For the US side, proportions of each tillage practices (conventional, conservation and no-till) in each county for each crop type were estimated based on HUC8 tillage practice from USGS. For the Canadian side the same proportions were calculated from county level data.
- In partnership with Farm Bureau, we conducted a small survey of member farmers about their tillage practices. This data set confirmed the use of the more comprehensive USGS dataset.
- The proportions calculated here (tables below) were assumed to be the same for every year

Tables below shows percentages of tillage practices in the US part of the watershed (top) and Canadian side (bottom), and map shows the distribution. (NT=No-till, Cs=Conservation tillage, Cv=Conventional tillage)

|           | 1    |      |      |      | × ·  |      | )    |        |      |
|-----------|------|------|------|------|------|------|------|--------|------|
| Country   | Corn |      |      | Soyb | eans |      | Wint | er whe | at   |
| County    | NT   | Cs   | Cv   | NT   | Cs   | Cv   | NT   | Cs     | Cv   |
| Lapeer    | 10.4 | 31.1 | 58.5 | 23.4 | 32.0 | 44.6 | 19.6 | 29.6   | 50.8 |
| Macomb    | 12.9 | 50.7 | 36.4 | 39.0 | 25.3 | 35.7 | 38.9 | 39.7   | 21.4 |
| Oakland   | 19.7 | 46.2 | 34.1 | 48.9 | 22.7 | 28.4 | 48.7 | 39.3   | 12.0 |
| Sanilac   | 10.2 | 28.5 | 61.4 | 21.3 | 32.9 | 45.8 | 17.0 | 27.9   | 55.1 |
| St. Clair | 11.0 | 31.2 | 57.7 | 23.4 | 32.1 | 44.5 | 19.7 | 27.8   | 52.5 |
| Washtenaw | 37.2 | 28.3 | 34.6 | 65.5 | 19.7 | 14.8 | 64.1 | 27.3   | 8.6  |
| Wayne     | 32.8 | 32.1 | 35.2 | 59.8 | 21.1 | 19.1 | 58.6 | 28.1   | 13.3 |

| County    | NT   | Cs   | Cv   |
|-----------|------|------|------|
| Elgin     | 23.8 | 37.4 | 38.8 |
| Essex     | 57.1 | 19.9 | 23.1 |
| Huron     | 34.1 | 43.7 | 22.2 |
| Kent      | 40.1 | 27.8 | 32.1 |
| Lambton   | 47.0 | 30.5 | 22.5 |
| Middlesex | 39.8 | 35.0 | 25.3 |
| Oxford    | 25.3 | 41.9 | 32.8 |
| Perth     | 27.9 | 48.9 | 23.2 |



- Tillage practices in each county were assigned to each HRU's crop type or crop rotation to match the proportions calculated above.
  - The distribution of tillage practice within a county is random. However, the following were taken into account:
    - Corn fields were assumed to have more conventional than other tillage practices, e.g., HRUs with continuous corn rotation are assumed to have conventional tillage.
    - Conservation and no-till practices are assigned more frequently on HRUs with more crops in rotation.

# **Tile Drain Implementation**

Sources:

- Estimated based on soil type for US side
- OMAFRA tile drain layer for Canadian side (<u>https://www.ontario.ca/data/tile-drainage-area</u>)

#### **Processes/Assumptions:**

- There was no recent and explicit tile drain data for the US side of the watershed. Hence, SSURGO soil data was used to estimate potential tile drained areas.
  - Agricultural HRUs with poorly and very poorly drained soil types were assumed to have tile drainage systems in the US side of the watershed.
- For the Canadian side, the tile drainage layer from OMAFRA was overlaid by the HRU boundaries.
  - If the area of HRU covered by tile drainage layer is greater than or equal to half of the HRU area, that HRU is assumed to have tile drainage installed, otherwise no-tile is assumed.



• Due to lack of additional information, U.S. tile drainage systems were implemented with uniform depth and spacing but were varied based on soil types in Canada based on advisory group feedback and guidance from K McKague, OMAFRA). The tables below outline the tile specifications used in SWAT (left) (from Dagnew et al. 2019b) and the fraction of cropland with tile drainage systems (Dagenew et al. 2019a).

|        | Davamatan   | Soil types |       |       |  |  |
|--------|-------------|------------|-------|-------|--|--|
|        | rarameter   | Clayey     | Loamy | Sandy |  |  |
| UG     | Depth (mm)  | 1000       | 1000  | 1000  |  |  |
| 05     | Spacing (m) | 20         | 20    | 20    |  |  |
| Canada | Depth (mm)  | 650        | 750   | 900   |  |  |
| Сапаца | Spacing (m) | 8          | 12    | 15    |  |  |

| IIIIC9/Tautiaury name | Tiled area   |                     |  |  |
|-----------------------|--------------|---------------------|--|--|
| HUC8/Ternary name     | % total area | % agricultural area |  |  |
| St. Clair (SC)        | 37           | 59                  |  |  |
| Clinton (CL)          | 8            | 46                  |  |  |
| Detroit (DR)          | 1            | 16                  |  |  |
| Lake St. Clair        | 5            | 29                  |  |  |
| U.S. total            | 18           | 55                  |  |  |
| Upper Thames (UT)     | 54           | 62                  |  |  |
| Lower Thames (LT)     | 49           | 55                  |  |  |
| Thames total          | 51           | 59                  |  |  |
| Sydenham (SY)         | 69           | 77                  |  |  |
| Essex                 | 58           | 72                  |  |  |
| Canada total          | 58           | 67                  |  |  |
| Watershed total       | 42           | 64                  |  |  |

# **Other Model Inputs**

## **Industrial and Municipal Point Sources**

#### Sources:

- US: EPA Discharge Monitoring Reports for US (https://cfpub.epa.gov/dmr/)
- Canada: OMECC's database for industrial wastewater discharges, as required by Effluent Monitoring and Effluent Limits and Municipal (EMEL/MISA) Regulations (https://www.ontario.ca/data/industrial-wastewater-discharges )
- Personal communication from advisory group, especially staff at Great Lakes Water Authority Water Resources Recovery Facility

#### **Processes/assumptions:**

- Monthly point source loads were available for years 2008 to 2015 for US and 2004 to 2014 for Canada.
  - The available data was extended to the years 2001-2015. Missing data for a certain month of a year were filled with average values from
    - The same month in other years where there is observation, if available.
    - If there is no data for the same month in other years, estimation was made based on values from other months.
  - Since no point source data had DRP measurements, only TP, we assumed that 47% of TP was DRP. This number comes from data at Toledo WWTP and Detroit WWTP.
  - The point source data also includes combined sewer overflow data. Point source locations are shown in map below.



# Reservoirs

#### Sources:

- Government of Canada (<u>https://ec.gc.ca/rhc-wsc/default.asp?lang=En&n=9018B5EC-1</u>)
- Upper Thames River Conservation Authority (<u>http://thamesriver.on.ca/watershed-health/surfacewater-groundwater-studies/</u>)
  - Three reservoirs in upper Thames River (Fanshawe, Pittock, and Wildwood) were considered following advisory group recommendation during the Jan. 19, 2017 meeting.
  - There are three reports (2005, 2006, and 2015) where data is extracted to determine reservoir properties.
  - o Additional data was requested and obtained from the Authority
- Personal communications to confirm specifications

#### Processes/assumptions:

- Elevation-area-volume relationship
  - For Fanshawe reservoir this was obtained from documents available in Upper Thames River Conservation Authority website
  - For Pittock and Wildwood reservoirs, the information was obtained through the same organization via personal communication.
    - This information is important to determine the surface areas and volumes of reservoirs during operations at principal spillway and emergency spillway that are required for model development.
- Daily flow records are available at the Fanshawe reservoir outlet from Government of Canada Water Office website.
  - Similar data was obtained from Upper Thames River Authority personal contact for the other two reservoirs, Pittock and Wildwood.
- Information about the reservoir water quality is extracted from the three reports mentioned above.
  - SWAT required nitrogen and phosphorous settling rate and initial concentrations in reservoirs.
    - While the initial concentration won't be important as the model is set to have a warm-up period (a period to establish watershed specific properties such this) before the actual simulation is performed, average concentrations reported are used.
    - Settling rates were estimated based on sample nutrient report and whether a reservoir is a source or a sink for nutrients.
      - A reservoir is determined to be a sink or a source based on observations extracted in the three reports available at Upper Thames River Conservation Authority website.



# **Calibration and Validation Process**

## **Data Sources**

#### Sources:

- USGS and Water Quality Portal for US flow and water quality data, respectively (<u>https://waterdata.usgs.gov/nwis, https://www.waterqualitydata.us/</u>)
- Government of Canada and PWQMN for Canada flow and water quality data, respectively <u>https://ec.gc.ca/rhc-wsc/default.asp?lang=En&n=9018B5EC-1</u>, <u>https://www.ontario.ca/data/provincial-stream-water-quality-monitoring-network</u>

#### Processes/assumptions:

- Daily flow data is available for the required period (2001-2015) for the most part. In cases where data is missing, it was estimated from flow-water level relationships if water level is available or from upstream stations.
  - The blue dots in the figure below indicate flow stations utilized to generate flow data at the calibration/validation locations (red rectangle).
- A number of sample water quality data (sediment, TP, DRP, NO3 and TN) available from multiple stations (orange dots in the figure below) range from 4 to 32 samples per years for years 2001 2015.



# **Calibration/Validation Locations:**

Calibration/validation was performed at the outlets of each major streams of HUC8/Tertiary watersheds as shown in figure above. These locations were selected mainly due to the fact that they are the most downstream stations in each major streams which have water quality observations with in a predetermined simulation period (2001-2015). Flow data for most of these locations were calculated using area ratio from upstream flow gauging station(s).

### **Simulation Periods**

- Warm-up: The warm-up simulation period is the time after which the model eliminates biases due to initial conditions. While there is no strict rule on how long a warm up period should be, at least 1 year is recommended in SWAT modeling practices. Generally, the longer the warm up period the better in terms of model accuracy. In this specific study a warm-up period of 2 years was used.
- **Calibration:** is the process of fitting observations with model outputs by changing relevant model parameters. There are hundreds of parameters in SWAT model, however, modeling experience and/or initial sensitivity analysis could help focus on important parameters during calibration processes. In this study, years **2007-2015** were selected as a calibration period.
- Validation: is a process of demonstrating how well the calibrated model predicts observations for periods different from the calibration period without changing model parameters further. A validation period of 2001-2006 was used in this project.

While it is a common practice to use earlier years for calibration and later years for validation, the above periods were chosen for this project to capture the most recent years better in the model and most importantly most of water quality samples were collected in the later years of the simulation period.

# **Calibration/Validation Time Steps**

#### Flow:

- Complete daily values of flow for most of the calibration/validation periods were available. Some missing values were filled with either linear interpolation or long-term average values or stage-discharge relationship depending on the number of missing values.
- Flow was calibrated/validated at **Daily, Monthly** and **Annual** time steps simultaneously

#### Water quality:

- In this project total suspended sediment (TSS), total phosphorus (TP), total nitrogen (TN), dissolved reactive phosphorus (DRP) and nitrate (NO<sup>3</sup>) were considered for calibration.
- The following table shows the number of daily water quality sample data available at each location within the simulation period (2001-2015) and used for calibration/validation at daily time steps.

|                   | Number of sample points |                               |     |     |     |  |  |
|-------------------|-------------------------|-------------------------------|-----|-----|-----|--|--|
| <b>River Name</b> | TSS                     | TSS TP TN DRP NO <sup>3</sup> |     |     |     |  |  |
| Upper Thames      | 109                     | 113                           | 115 | 111 | 112 |  |  |
| Black             | 48                      | 68                            | 53  | 66  | 37  |  |  |
| Sydenham          | 281                     | 310                           | 313 | 312 | 311 |  |  |
| Clinton           | 152                     | 257                           | 233 | 257 | 156 |  |  |
| Lower Thames      | 243                     | 268                           | 269 | 266 | 266 |  |  |
| Rouge             | 67                      | 68                            | 60  | 68  | 68  |  |  |

• Given limited number of water quality samples, dividing them into calibration and validation would further reduce the number of samples for comparison and statistical calculations. Hence, once the model is calibrated and validated for flow, the entire water quality sample data is compared to the corresponding values from the model without dividing them into calibration and validation period. Hence, parameters were adjusted to fit the entire observed water quality dataset.

### **Additional Details**

Further information about the calibration and validation process, including model performance statistics, simulated load estimates, and an explanation of scenario analyses are all available in two papers and their online supporting materials that were written by Awoke Dagnew (2019a and 2019b) and listed below in the reference section.

### **References for SWAT Set-up**

Dagnew, A., Scavia, D., Wang, Y., Muenich, R., Long, C., Kalcic, M. 2019a. Modeling Flow, Nutrient and Sediment Delivery from a Large International Watershed using a Field-Scale SWAT model. Journal of the American Water Resources Association, in press.

Dagnew, A., Scavia, D., Wang, Y., Muenich, R., Kalcic., M. 2019b. Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. Journal of Great Lakes Research, in press.

Kalcic, M.M., Chaubey, I., Frankenberger, J., 2015. Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries. Biol Eng 8, 12.

Kellogg, R.L., Lander, C.H., Moffitt, D.C., Gollehon, N., 2000. Manure nutrients relative to the capacity of cropland and pastureland to assimilate nutrients: spatial and temporal trends for the United States. Proc. Water Environ. Fed. 2000 (16), 18–157.

Teshager, A.D., Gassman, P.W., Secchi, S., Schoof, J.T., Misgna, G., 2016. Modeling 28 Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration 29 and Validation with a Novel Procedure for Spatially Explicit HRUs. Environmental 30 Management 57, 894–911.

Back to top of section

# Section 4. Storm Water Management Model (SWMM) details

### **Model Overview**

A Storm Water Management Model (SWMM) was developed for the service area of the Great Lakes Water Authority's Water Resource Recovery Facility (GLWA WRRF) (See map below). This physically-based model routes rainfall inputs across a network of pipes, CSO basins, and other assets. GLWA provided a model for use in this project, and we updated and calibrated it using new sensor data, also shared by GLWA. The model was calibrated for volume at 14 outfalls (Figure 1) and at the intake to the WRRF. Model calibration procedure and results are described in:

• Hu, Y., Scavia, D., and Kerkez, B., 2018, *Are all data useful? Inferring causality to predict flows across sewer and drainage systems using directed information and boosted regression trees*, Water Research, 145, p. 697-706.



SWWM Area Map. Corner inset: GLWA sewer service area with the separated sewer area in light gray and the combined sewer area in dark gray. Main map: Combined sewer area modeled by SWMM with subcatchments delineated. Yellow circles are the 14 points where the SWMM was calibrated including 12 retention treatment basins (RTBs) and the two wet weather outfalls at the WRRF. White circles are other treated CSO outfalls that were not modeled in this study. Triangles are rain gauges used for analyses.

### **Scenario Analyses**

#### <u>Rainfall</u>

Two rainfall simulations were used to drive SWMM: a "normal" rainfall event and an "extreme" rainfall event (figure below). The normal rainfall event was based on the month-long period April 1-30, 2014, when about 2 inches of rain fell. The extreme rainfall event was based on the August 11-13, 2014 event, when over 6.5 inches of rain fell. We simulated rainfall evenly over the system (Figure 1) to generate comparable results for all RTBs.



The two graphs above show hourly rainfall used for regular rain scenario (top). Hourly rainfall used for extreme rain scenario (bottom). Note the different scales on both the y-axes and x-axes.

#### **Disconnection analysis**

We calculated the impact of the disconnected subcatchment *i* on the CSO volume reduction from the individual outfall *j* ( $R_{ij}$  from Equation 1) and from the system's total CSO volume ( $R_{i_{tot}}$  from Equation 2) as a percentage of the baseline CSO discharge volume. The analysis was carried out for each of the 402 subcatchments.

$$R_{ij} = 1 - \frac{D_{ij}}{D_j}, i = 1, \dots, 402,$$
(1)

$$R_{i\_tot} = 1 - \frac{D_i}{D_{tot}}, i = 1, ..., 402,$$
 (2)

D<sub>i</sub> is the baseline CSO discharge volume from the individual outfall j.

D<sub>tot</sub> is the baseline discharge for the entire system.

 $D_{ij}$  is the CSO discharge volume from the individual outfall j when the ith subcatchment is disconnected from the system.

 $D_i$  is the CSO discharge volume from the whole system when the ith subcatchment is disconnected from the sewer system.

 $R_{ij}$  and  $R_{i tot}$  were normalized based on the impervious area of subcatchment i.

#### **Baseline volumes**

Percent reductions of CSO in the SWMM scenarios are based on the baseline volumes in the table below. These are the discharge volumes generated by the calibrated model when the normal rain event and extreme rain event were modeled.

This table lists the baseline CSO discharge volumes from calibrated outfalls for normal and extreme rainfall events.

| Outfall                | Normal rain event<br>baseline discharge<br>(millions of gallons) | Extreme rain event<br>baseline discharge<br>(millions of gallons) |
|------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| Acacia Park RTB        | 2.14                                                             | 37                                                                |
| Birmingham RTB         | 0                                                                | 36.7                                                              |
| Bloomfield Village RTB | 0                                                                | 57.9                                                              |
| George W Kuhn RTB      | 0                                                                | 106                                                               |
| Redford Township RTB   | 0                                                                | 14.7                                                              |
| Inkster RTB            | 0.65                                                             | 19.3                                                              |
| Dearborn Heights RTB   | 0                                                                | 23.9                                                              |
| Milk River RTB         | 0                                                                | 80.4                                                              |
| Chapaton RTB           | 0                                                                | 70.5                                                              |
| Conner Creek RTB       | 0                                                                | 368.4                                                             |
| Hubbell-Southfield RTB | 30.3                                                             | 134.2                                                             |
| Oakwood RTB            | 30.9                                                             | 43.7                                                              |
| WRRF 49A               | 708.3                                                            | 905.8                                                             |
| WRRF 50A               | 265.3                                                            | 813.3                                                             |
| System total           | 1038                                                             | 2712                                                              |

#### **Green infrastructure analysis**

We tested two types of green infrastructure in SWMM: bioretention cells and permeable pavement. Table below contains the model parameter settings used for each GI implementation. Each of the GI designs was equipped with underdrains to comply with local soil conditions. The underdrain designs are a common practice that allows the GI to drain before the next storm event, since current soils do not allow for full infiltration.

| Parameters |                                    | Bioretention<br>Cell | Permeable<br>Pavement |
|------------|------------------------------------|----------------------|-----------------------|
|            | Berm Height (in)                   | 0                    | 0                     |
| Surface    | Surface Roughness<br>(Manning's n) | 0.1                  | 0.1                   |
|            | Surface Slope<br>(percent)         | 5.0                  | 1                     |
|            | Thickness (in)                     |                      | 5                     |
| Pavement   | Void Ratio                         |                      | 0.15                  |
|            | Permeability (in/hr)               |                      | 10                    |
| Soil       | Thickness (in)                     | 30                   |                       |
|            | Porosity                           | 0.5                  |                       |
|            | Conductivity (in/hr)               | 5.0                  |                       |
|            | Suction Head (in)                  | 2.0                  |                       |
|            | Thickness (in)                     | 15                   | 20                    |
| Storage    | Void Ratio                         | 0.75                 | 0.75                  |
|            | Seepage Rate (in/hr)               | 0.01                 | 0.15                  |
| Drain      | Flow Coefficient                   | 5.0                  | 5.0                   |
| Drain      | Offset Height (in)                 | 6                    | 6                     |

This table outlines the parameter settings of bioretention cell and permeable pavement in SWMM

Maximum treatment ratio of Bioretention Cell is 1:10, indicating one unit area of Bioretention Cell can treat the runoff from 10 units of the impervious area.

Maximum treatment ratio of Permeable Pavement is 1:5.

This supplemental information and the project report, *Watershed Assessment of Detroit River Nutrient Loads to Lake Eri*e, were produced by the University of Michigan Water Center.

The full project report and links to associated journal articles can be found here: www.myumi.ch/detroit-river