ELECTRIFY TRAVERSE CITY TC 2 NO C: REDUCING CARBON IN TRAVERSE CITY

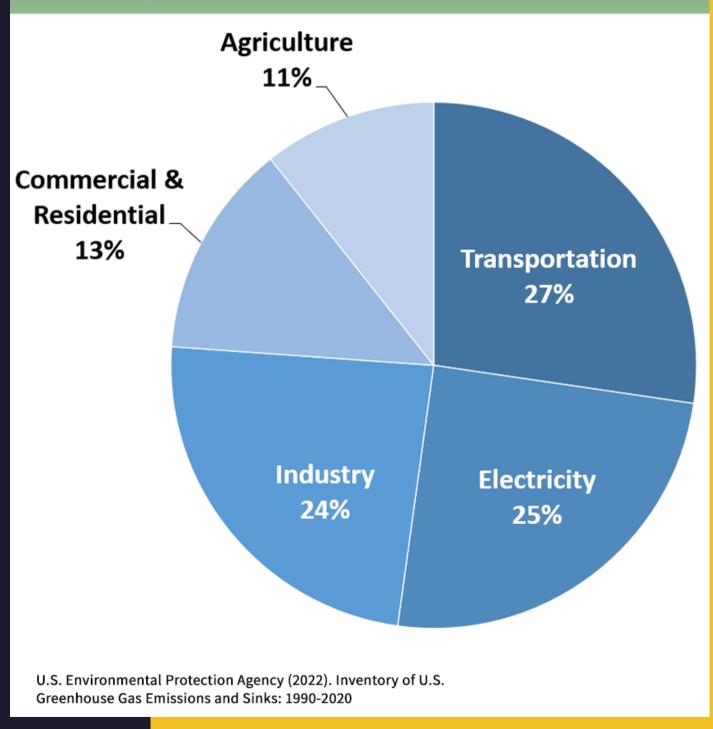
MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Jacob Hardy, Mentor

Traverse City Light & Power

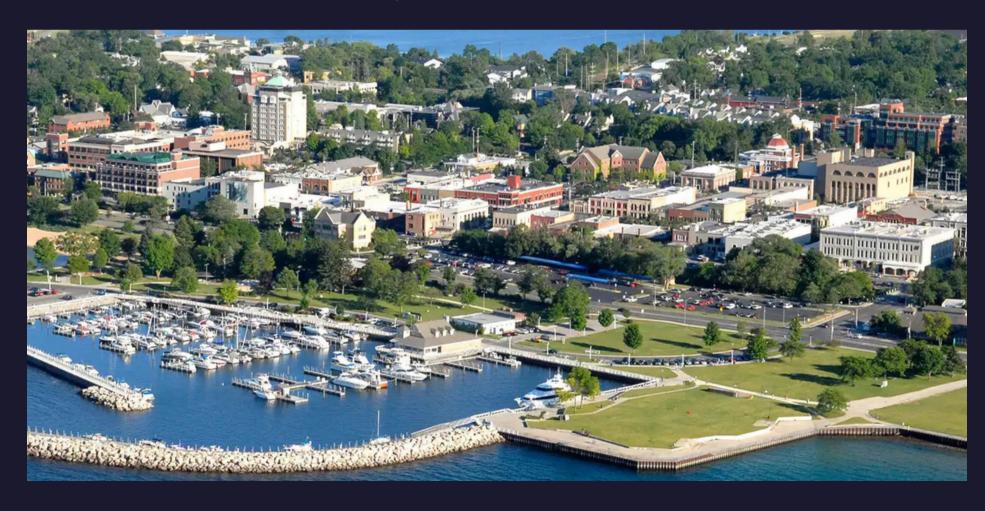
Luke Ranker, CLC Fellow

Masters of Urban and Regional Planning - University of Michigan


David Gard, TA

5 Lakes Energy

WHAT IS ELECTRIFICATION AND WHY DOES IT MATTER?


- Reduce Greenhouse Gas Emissions by using less natural gas.
- Nationally 13% of all U.S. GHG emissions come from commercial and residential uses
- Primarily from natural gas.
 - 80% of TCLP customers are residential.
 - 80% of TCLP revenue comes from commercial users.

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2020

Why electrify Traverse City?

- Municipal power companies are hyper-local
- Robust EV charging network
 - EVs key to electrification/GHG reduction
- Traverse City is in the early stages of creating a climate action plan.


ENGAGEMENT

Switching from natural gas will not be an easy sell.

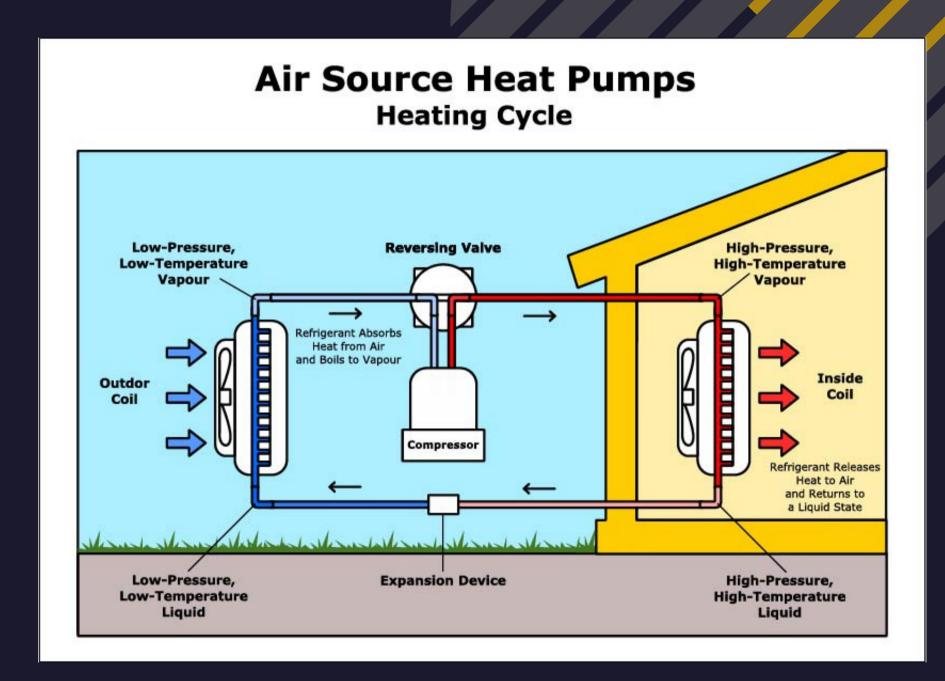
- Despite some increase in fuel cost, natural gas remains relatively cheap
- Build support by showing cost savings

WEBSITE

A one-stop-shop for electrification resources

Heat Pumps 101

Health & Safety


Heat Pumps 101

Problem: Both consumers and contractors are generally unaware of or misunderstand heat pumps.

Solution: The Heat Pumps 101 page offers a quick guide for HVAC novices.

- How they work
- Types of heat pumps
- Testimonial
- Financing options

Goal: Increase interest in heat pump installation.

Source: U.S. Department of Energy

Weatherization

Problem: Older buildings lack proper insulation, driving up energy costs and GHG emissions.

Solution: A simple guide to home weatherization.

- DIY steps with cost
- Financing options

Goal: Reduce home energy costs and make homes more efficient.

Source: U.S. Department of Energy

Health & Safety

Problem: Natural gas is popular for cooking but burning it exposes residents to toxins.

Solution: The Health & Safety page provides an easy-to-understand breakdown of research and links to relative websites.

Goal: Harness concerns over home safety and health to spur change.

Source: "Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes." *Environmental Science & Technology* 56, no. 4 (2022): 2529–39.

Creating Action

Establish a net zero goal

Give the public a number to aim for.

103 Host TC 2 NoC Events

Engage with people directly through community events and fairs.

Create strong branding

Make climate goals ubiquitous in Traverse City with strong branding.

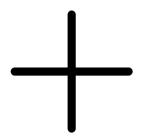
04

Consider other incentives

Motivate people to take action with financing and rebates.

GREEN FAIR DESIGN

A dedicated event like a
Green Fair helps build
interest around various
respects of decarbonization.


Electric Tech Demos

Electric Cooking

Home Efficiency

Additional Elements

Research Process

1 Interviews

- Burlington EnergyDepartment
- Michigan Saves
- Northwest Michigan
 Community Action Agency
- Multiple HVAC contractors

Source: City of Burlington, Vermont

Research Process

102 Heat Pump Price Modeling

- Obtained quotes for multiple heat pump installations as well as a new standard air conditioner
- Built operating cost model with efficiency data from Minnesota

Energy Useage	Annual Cost	~	Average Cost for	r duct	Average cost for (ductle 🔽
kWh/Year	\$/year					
9364.32	\$	869.01	\$	727.89		
7641.48	\$	709.13				
6586.68	\$	611.24				
7782.12	\$	722.18				
5180.24	\$	480.73			\$	373.05
2859.692	\$	265.38				
Input COP here:	Input rate (\$/kWh) h	ere:				
2.5	0.0928					
	Annual Operating C	ost				
	\$/year		Average Ducted		Average ductless	
	\$	864.80	\$	724.36		
	\$	705.69				
	\$	608.28				
	\$	718.68				
	\$	478.40			\$	107.15
	\$	264.09				
Input furnace efficiency:	Input natural gas price (\$/therm):			
85%	0.92					

Research Process

Energy Useage	Annual Cost	Average Cost for duc	t ▼ Average cost f	or ductle
kWh/Year	\$/year			
7803.6	\$ 724.17	\$ 606.	.58	
6367.9	•			
5488.9	·			
6485.1				
4316.866667	·		\$	310.88
2383.076667	\$ 221.15			
Input COP here:	Input rate (\$/kWh) here:			
3	0.0928			
	Annual Operating Cost			
	\$/year	Average Ducted	Average ductle	ess
	\$ 864.80	\$ 724.	.36	
	\$ 705.69			
	\$ 608.28			
	\$ 718.68			
	\$ 478.40		\$	107.15
	\$ 264.09			
Input furnace efficiency:	Input natural gas price (\$/therm	n):		
85%	0.92			

03

Academic Research

Summarized research
 about natural gas health
 and environmental impacts
 from multiple sources

04


Green Fair Structure

- Compared environmental fairs from multiple cities
- Visited Ann Arbor's Green
 Fair and Electrification Expo

QUESTIONS?

