Graham Sustainability Institute

Products

Use the search feature below to find Water Center supported products, including papers, videos, and fact sheets.

Displaying 71 - 80 of 98
Publication Cover
Fact Sheet

Climate change will significantly affect coastal habitats as sea levels, storms, erosion, and water quality change. However, the impacts on different habitats in different locations will vary, and it is not clear how coastal managers should best protect vulnerable habitats such as marshes, seagrass beds, and dunes. A more complete understanding of risks could help coastal managers prioritize actions that could enhance the resilience of coastal habitats. A new tool has been developed, the Climate Change Vulnerability Assessment Tool for Coastal Habitats (CCVATCH), to help land managers, decision makers, and researchers develop conservation management, and restoration plans for coastal habitats. This assessment tool identifies primary sources of vulnerability to assist with prioritizing coastal habitat management actions.

April 2016
Publication Cover
Paper/Project Report

In the most comprehensive study of Line 5 oil spill impacts publicly available, Dave Schwab presents three potential levels of oil discharge, measured in barrels (bbl), each containing 42 US gallons of oil, including 5,000 bbl, 10,000 bbl and 25,000 bbl in the report. Schwab simulated 840 hypothetical spill cases. 

March 2016
Fact Sheet Cover
Fact Sheet

Research scientist David Schwab simulated 840 hypothetical spill cases. In the most comprehensive study of Line 5 oil spill impacts publicly available, Schwab presents three potential levels of oil discharge — measured in barrels (bbl), each containing 42 US gallons of oil — including 5,000 bbl, 10,000 bbl and 25,000 bbl in the report. Schwab simulated 840 hypothetical spill cases. More than 700 miles of shoreline in Lakes Michigan and Huron and their islands are potentially vulnerable to an oil release in the Straits. This summary provides an overview of the key findings, based on the full report, Statistical Analysis of Straits of Mackinac Line 5: Worst Case Spill Scenarios (March 2016). 

March 2016
Fact Sheet

This summary report presents key results of a study to identify potential options for managing agricultural phosphorus loads and lessening future Harmful Algal Blooms in Lake Erie.  The research team applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed phosphorus loading targets.

March 2016
Paper/Project Report
The overall goal of this study was to identify potential options for agricultural management to reduce phosphorus loads and lessen future Harmful Algal Blooms in Lake Erie.  The research team applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed phosphorus loading targets.
 
This report was compiled by the University of Michigan Water Center with funding from the Fred A. and Barbara M. Erb Family Foundation.
March 2016
Fact Sheet

This fact sheet describes a new collaborative research project facilitated by the U-M Water Center. This study will model the nutrient dynamics within the watersheds that drain into the St. Clair and Detroit rivers. The planned modeling approach is designed to characterize Detroit River nutrient loads to Lake Erie and then compare the efficacy of different management options. A project advisory group has been assembled to provide feedback on the policy context, planned research approach, and potential information products. For more information, see project web page.

March 2016
Paper/Project Report

This report summarizes lessons learned through a series of restoration projects completed between 2004 and 2015 in the St. Clair and Detroit Rivers. This information was compiled to help others — including local leaders, project coordinators, restoration funders and professional engineers and biologists — learn from and apply the knowledge we’ve acquired through our adaptive management approach. 

February 2016
Publication Cover
Fact Sheet

Southern California lagoons are complex, both in their environments and their management. In their natural states many estuaries will periodically open and close to the sea, but the strategy in recent decades has been to actively manage these lagoons to be largely open to improve water quality. Recently, however, scientists and managers have been reconsidering this one-size-fits-all approach. Managing a lagoon mouth to be continually open can be expensive, and a lagoon that is allowed to close may engender a unique set of species and environmental services. This fact sheet outlines how the study, supported by the National Estuarine Research Reserve System (NERRS), will focus on using existing knowledge and gather new data to provide managers with the information they need to improve the health of this resource.

February 2016
Publication Cover
Fact Sheet

The national estuarine research reserves form a network of coastal sites protected for long-term stewardship, research, and education. To support this mission, the reserves conduct long-term monitoring of water quality, weather, coastal habitat, and biological communities using consistent methods. This system-wide monitoring program has great value to support coastal resource management and research. However, this value has not been fully realized because reserve staffs often lack the time, technical expertise, and computational resources to analyze large, complex data sets. This project will provide research staff members from the mid-Atlantic reserves with targeted tools, graphical support, and training to facilitate the use of reserve monitoring data. The project team will focus on deciphering trends in water quality parameters, which are related to management issues such as storm surge mitigation.

February 2016
Publication Cover
Fact Sheet

Communities in the Kenai Peninsula are already coping with a variety of impacts related to a warming climate, including reductions in wetland areas, glacial ice coverage, and freshwater availability, and increases in temperatures, ocean acidification, and harmful algal blooms. Efforts to document these recent changes will be leveraged to create tangible recommendations and a long-term local strategy for adaptation to rapid climate change. Barriers hindering effective climate change planning on the peninsula include the uncertainty of future trajectories, a need for a synthesis of regional data, and limited capacity for interagency collaboration. This project aims to address these needs and help coastal communities on the Kenai Peninsula plan for a changing climate.

February 2016

Pages