Graham Sustainability Institute

Products

Use the search feature below to find Water Center supported products, including papers, videos, and fact sheets.

Displaying 31 - 40 of 90
Fact Sheet

As the sixth largest estuary on the west coast, the Coos Bay estuary is one of Oregon’s most important ecological resources, both in its abundance, diversity, and quality and in the economic and cultural value it provides. However, modern management of the estuary and surrounding shorelands is based on the economic and social drivers of the 1970s, when local land use plans were developed. The surrounding community now agrees that current land use regulations need to evolve to reflect today’s economic and social drivers, while proactively addressing environmental changes and protecting natural resources.

May 2017
Fact Sheet

The Jacques Cousteau National Estuarine Research Reserve convened a roundtable of mosquito control agencies to examine the intersection of sea level rise, salt marsh structure, habitat modification and restoration, and nuisance mosquito populations. A chief concern is how climate change and sea level rise may affect marsh habitats, subsequently increasing mosquito production. Also of concern is how past physical alterations meant to reduce mosquito habitat affect the ability of salt marshes to maintain their relative elevation, and, as a result, their long-term resiliency in the face of sea level rise. Recognizing the valuable role that salt marshes play in buffering coastal communities, coastal decision-makers are increasingly advocating for the restoration of salt marshes. While the thin-layer application of dredge spoil is of increasing interest as a way to help marshes keep up with rising sea levels, it could also greatly affect mosquito production.

May 2017
Fact Sheet

Coastal communities are striving to safeguard themselves from increasing storm risks. One approach is to restore and manage natural features, including coastal wetlands such as Piermont Marsh on the Hudson River in New York. Residents believe Piermont Marsh significantly reduced wave and flood debris damage on the abutting Village of Piermont during Hurricane Sandy. Without the marsh, the financial impact of Sandy would likely have been far worse. Marsh managers and village leaders now seek to better understand the marsh’s capacity to buffer against waves, flood, and debris, and the economic values associated with these functions. In partnership with the local community, this project will design and apply state-of-the-art predictive models that will evaluate different approaches to managing the marsh.

April 2017
Fact Sheet

Hundreds of dams built on tributaries of the Hudson River estuary currently hold substantial volumes of sediment and have altered the way that sediment moves through the system. Natural resource managers are interested in removing some of these dams to improve connectivity of aquatic habitats, restore fish spawning habitat, and reduce risks of dam failure. A high-priority management need of the Hudson River National Estuarine Research Reserve is to improve the scientific understanding of potential impacts that dam removals have on sediment transport in the estuary and deposition in
downstream tidal wetlands, including how these dam-derived sediments might help offset future sea level rise impacts.

April 2017
Fact Sheet

This project will 1) quantify pathogens, nutrients, and sediment delivery to the Rachel Carson Reserve; 2) create predictive models for shellfish and recreational waters in the North Carolina Reserve by using this information, along with decades of historical data; 3) engage stakeholders and end users to prioritize management options; and 4) engage coastal decision makers, community members, K-12 students, and teachers in hands-on education on stormwater runoff and its impacts.

 

 

Keywords: NERRS, Rachel Carson Reserve, stormwater runoff

April 2017
Fact Sheet

This project will assess the ecosystem services of shellfish farming by measuring impacts of newly established farms in the North Carolina Research Reserve. Because there is an opportunity to assess conditions before farm installation, North Carolina estuaries provide an ideal place to measure these effects. Two years of intensive sampling in and adjacent to oyster farms, concentrating on wild shellfish resources and the physical and chemical environment will aim to link small-scale changes with large-scale ecosystem-level alterations. Coastal managers, state agencies, and shellfish farmers will provide input throughout the course of the project to ensure that the study parameters align with decision-making needs. The project will culminate with the production of visualization tools and models to allow resource managers, culturists, and reserve staff members to make better decisions when determining the locations and scales of shellfish farming operations.

 

April 2017
Fact Sheet

This summary covers the need for oil spill responders require accurate, up-to-date information to ensure a rapid, coordinated, and effective response to a spill. New technologies present an opportunity for responders to use real-time information about a spill and the conditions affecting it. Electronic maps can be used to create dynamic oil spill response plans, allowing responders to react immediately to changing conditions in the field. These plans can be accessed using a tablet, cellphone, or computer, and are expected to improve oil spill response times, potentially preventing a small spill from becoming a larger one.

The project team’s pilot work in the Western Lake Erie Basin demonstrates the potential for electronic plans to be applied throughout the Great Lakes region.

See: Project Website

January 2017
Fact Sheet

This fact sheet provides an overview of how the Mission-Aransas National Estuarine Research Reserve is leveraging approaches and lessons learned from the first “Bringing Wetlands to Market” project, which was developed by the Waquoit Bay National Estuarine Research Reserve and supported by the Science Collaborative from the National Estuarine Research Reserve System. The project will boost support for restoration and conservation in several ways. It will connect Gulf Coast blue carbon end users with established blue carbon networks. It will provide long-term and sustained technical assistance opportunities and connections to carbon finance markets. And it will engage the public’s interest in blue carbon education through tours, videos or other media, and two “Bay Talks” lectures.

 

Keywords: Mission-Aransas National Estuarine Research Reserve, restoration, conservation, carbon finance markets

November 2016
Assessing Green Infrastructure Performance and Cost
Fact Sheet

Green infrastructure (GI) systems are installed in strategic locations to capture stormwater runoff after a rain event. GI projects are placed in locations to slow stormwater flows to streams, reduce flooding or fast currents that erode stream banks, or filter pollutants from parking lots or roadways. This fact sheet highlights how GI projects such as rain gardens, permeable pavement, and tree filters are part of a stormwater runoff toolkit for local decision-makers.

 

Keywords

November 2016
Stream Restoration
Fact Sheet

With streams becoming one of the most endangered ecosystems on the planet, we need restoration practitioners more than ever. Stream restoration often requires the collaboration of engineers, ecologists, and physical scientists. The science team makes decisions based on the weight of evidence of science and important social and environmental values guiding the restoration effort. Faculty members at the University of Michigan (U-M) have revised a stream restoration engineering course to bring together U-M students and faculty to study stream restoration in an interdisciplinary way. This fact sheet provides a summary about how a new course immerses students in this multidisciplinary, problem-driven profession.

 

Keywords: Stream Restoration, social and environmental values, engineering, Huron River, University of Michigan Water Center

November 2016

Pages