Products

Use the search feature below to find Water Center supported products, including papers, videos, and fact sheets.

Displaying 11 - 20 of 67
Fact Sheet

Coastal communities are striving to safeguard themselves from increasing storm risks. One approach is to restore and manage natural features, including coastal wetlands such as Piermont Marsh on the Hudson River in New York. Residents believe Piermont Marsh significantly reduced wave and flood debris damage on the abutting Village of Piermont during Hurricane Sandy. Without the marsh, the financial impact of Sandy would likely have been far worse. Marsh managers and village leaders now seek to better understand the marsh’s capacity to buffer against waves, flood, and debris, and the economic values associated with these functions. In partnership with the local community, this project will design and apply state-of-the-art predictive models that will evaluate different approaches to managing the marsh. As a result, marsh managers will better understand coastal wetlands’ role in enhancing community resilience to storm events and will have the tools and knowledge to make sound decisions.

 

Keywords: Piermont Marsh, Hudson River, New York, coastal wetlands

April 2017
Fact Sheet

Hundreds of dams built on tributaries of the Hudson River estuary currently hold substantial volumes of sediment and have altered the way that sediment moves through the system. Natural resource managers are interested in removing some of these dams to improve connectivity of aquatic habitats, restore fish spawning habitat, and reduce risks of dam failure. A high-priority management need of the Hudson River National Estuarine Research Reserve is to improve the scientific understanding of potential impacts that dam removals have on sediment transport in the estuary and deposition in
downstream tidal wetlands, including how these dam-derived sediments might help offset future sea level rise impacts.

Project leaders will address needs identified by managers and regulators to assess the immediate impacts of sediment that is released when a dam is removed, as well as the longer-term implications. The approach combines field observations with analysis of sediment transport using a proven hydrodynamic model. The project will develop watershed assessment tools for permitting dam removals and establish an improved scientific basis for considering the potential downstream benefits in regulatory decision-making.

 

 

Keywords: NERRS, Hudson River National Estuarine Research Reserve, dam removal

April 2017
Fact Sheet

This project will 1) quantify pathogens, nutrients, and sediment delivery to the Rachel Carson Reserve; 2) create predictive models for shellfish and recreational waters in the North Carolina Reserve by using this information, along with decades of historical data; 3) engage stakeholders and end users to prioritize management options; and 4) engage coastal decision makers, community members, K-12 students, and teachers in hands-on education on stormwater runoff and its impacts.

 

 

Keywords: NERRS, Rachel Carson Reserve, stormwater runoff

April 2017
Fact Sheet

This project will assess the ecosystem services of shellfish farming by measuring impacts of newly established farms in the North Carolina Research Reserve. Because there is an opportunity to assess conditions before farm installation, North Carolina estuaries provide an ideal place to measure these effects. Two years of intensive sampling in and adjacent to oyster farms, concentrating on wild shellfish resources and the physical and chemical environment will aim to link small-scale changes with large-scale ecosystem-level alterations. Coastal managers, state agencies, and shellfish farmers will provide input throughout the course of the project to ensure that the study parameters align with decision-making needs. The project will culminate with the production of visualization tools and models to allow resource managers, culturists, and reserve staff members to make better decisions when determining the locations and scales of shellfish farming operations.

 

Keywords: NEERS research, North Carolina Research Reserve, Shellfish farming, Oyster

April 2017
Fact Sheet

This summary covers the need for oil spill responders require accurate, up-to-date information to ensure a rapid, coordinated, and effective response to a spill. New technologies present an opportunity for responders to use real-time information about a spill and the conditions affecting it. Electronic maps can be used to create dynamic oil spill response plans, allowing responders to react immediately to changing conditions in the field. These plans can be accessed using a tablet, cellphone, or computer, and are expected to improve oil spill response times, potentially preventing a small spill from becoming a larger one.

The project team’s pilot work in the Western Lake Erie Basin demonstrates the potential for electronic plans to be applied throughout the Great Lakes region.

See: Project Website

Keywords: Oil Spill Response Plan, Electronic, Western Lake Erie Basin, Great Lakes region, water quality, David Dean, Colin Brooks, Arthur Endsley, Michigan Tech Research Institute 

January 2017
Fact Sheet

This fact sheet provides an overview of how the Mission-Aransas National Estuarine Research Reserve is leveraging approaches and lessons learned from the first “Bringing Wetlands to Market” project, which was developed by the Waquoit Bay National Estuarine Research Reserve and supported by the Science Collaborative from the National Estuarine Research Reserve System. The project will boost support for restoration and conservation in several ways. It will connect Gulf Coast blue carbon end users with established blue carbon networks. It will provide long-term and sustained technical assistance opportunities and connections to carbon finance markets. And it will engage the public’s interest in blue carbon education through tours, videos or other media, and two “Bay Talks” lectures.

 

Keywords: Mission-Aransas National Estuarine Research Reserve, restoration, conservation, carbon finance markets

November 2016
Assessing Green Infrastructure Performance and Cost
Fact Sheet

Green infrastructure (GI) systems are installed in strategic locations to capture stormwater runoff after a rain event. GI projects are placed in locations to slow stormwater flows to streams, reduce flooding or fast currents that erode stream banks, or filter pollutants from parking lots or roadways. This fact sheet highlights how GI projects such as rain gardens, permeable pavement, and tree filters are part of a stormwater runoff toolkit for local decision-makers.

 

Keywords

November 2016
Stream Restoration
Fact Sheet

With streams becoming one of the most endangered ecosystems on the planet, we need restoration practitioners more than ever. Stream restoration often requires the collaboration of engineers, ecologists, and physical scientists. The science team makes decisions based on the weight of evidence of science and important social and environmental values guiding the restoration effort. Faculty members at the University of Michigan (U-M) have revised a stream restoration engineering course to bring together U-M students and faculty to study stream restoration in an interdisciplinary way. This fact sheet provides a summary about how a new course immerses students in this multidisciplinary, problem-driven profession.

 

Keywords: Stream Restoration, social and environmental values, engineering, Huron River, University of Michigan Water Center

November 2016
Video

This video describes how and why scientists use models and the benefits of using a multiple model approach for lake, ecosystem, and climate applications. A multiple model approach increases confidence in model results. Using this approach, scientists capture the range of potential outcomes while smoothing out extremes that might be present in any one model. U-M Water Center scientists used the multiple model approach to evaluate how the Maumee River watershed and Lake Erie water quality may be improved. In this case, scientists analyzed nutrient reduction scenarios for the Maumee River watershed and used results from multiple models to inform the development of new Lake Erie phosphorus targets under Annex 4 of the Great Lakes Water Quality Agreement.

Keywords: University of Michigan Water Center, multiple model approach, watershed model, ecosystem model, climate model, Lake Erie, nutrients, Great Lakes

November 2016
Publication cover
Fact Sheet

This project will support the development of new, innovative visitor displays at three national estuarine research reserves - the Guana Tolomato Matanzas, Mission-Aransas, and Delaware Reserves. The reserves will partner with students at the University of Delaware to produce gesture controlled, educational computer games that promote interactive, learning opportunities. The experiential games will be designed for use on interactive screens that will be available for public use in each reserve’s exhibit hall. This project will provide communities with relevant, accessible science while offering civic-minded solutions and resources that encourage participants to take conservation-based action promoting ecosystem resilience.

 

Keywords: Guana Tolomato Matanzas, Mission-Aransas, and Delaware Reserves, University of Delaware, students, learning opportunities

October 2016

Pages