Products

Use the search feature below to find Water Center supported products, including papers, videos, and fact sheets.

Displaying 1 - 10 of 53
Fact Sheet

This summary covers the need for oil spill responders require accurate, up-to-date information to ensure a rapid, coordinated, and effective response to a spill. New technologies present an opportunity for responders to use real-time information about a spill and the conditions affecting it. Electronic maps can be used to create dynamic oil spill response plans, allowing responders to react immediately to changing conditions in the field. These plans can be accessed using a tablet, cellphone, or computer, and are expected to improve oil spill response times, potentially preventing a small spill from becoming a larger one.

The project team’s pilot work in the Western Lake Erie Basin demonstrates the potential for electronic plans to be applied throughout the Great Lakes region.

See: Project Website

Keywords: Oil Spill Response Plan, Electronic, Western Lake Erie Basin, Great Lakes region, water quality, David Dean, Colin Brooks, Arthur Endsley, Michigan Tech Research Institute 

January 2017
Fact Sheet

This fact sheet provides an overview of how the Mission-Aransas National Estuarine Research Reserve is leveraging approaches and lessons learned from the first “Bringing Wetlands to Market” project, which was developed by the Waquoit Bay National Estuarine Research Reserve and supported by the Science Collaborative from the National Estuarine Research Reserve System. The project will boost support for restoration and conservation in several ways. It will connect Gulf Coast blue carbon end users with established blue carbon networks. It will provide long-term and sustained technical assistance opportunities and connections to carbon finance markets. And it will engage the public’s interest in blue carbon education through tours, videos or other media, and two “Bay Talks” lectures.

 

Keywords: Mission-Aransas National Estuarine Research Reserve, restoration, conservation, carbon finance markets

November 2016
Assessing Green Infrastructure Performance and Cost
Fact Sheet

Green infrastructure (GI) systems are installed in strategic locations to capture stormwater runoff after a rain event. GI projects are placed in locations to slow stormwater flows to streams, reduce flooding or fast currents that erode stream banks, or filter pollutants from parking lots or roadways. This fact sheet highlights how GI projects such as rain gardens, permeable pavement, and tree filters are part of a stormwater runoff toolkit for local decision-makers.

 

Keywords

November 2016
Stream Restoration
Fact Sheet

With streams becoming one of the most endangered ecosystems on the planet, we need restoration practitioners more than ever. Stream restoration often requires the collaboration of engineers, ecologists, and physical scientists. The science team makes decisions based on the weight of evidence of science and important social and environmental values guiding the restoration effort. Faculty members at the University of Michigan (U-M) have revised a stream restoration engineering course to bring together U-M students and faculty to study stream restoration in an interdisciplinary way. This fact sheet provides a summary about how a new course immerses students in this multidisciplinary, problem-driven profession.

 

Keywords: Stream Restoration, social and environmental values, engineering, Huron River, University of Michigan Water Center

November 2016
Video

This video describes how and why scientists use models and the benefits of using a multiple model approach for lake, ecosystem, and climate applications. A multiple model approach increases confidence in model results. Using this approach, scientists capture the range of potential outcomes while smoothing out extremes that might be present in any one model. U-M Water Center scientists used the multiple model approach to evaluate how the Maumee River watershed and Lake Erie water quality may be improved. In this case, scientists analyzed nutrient reduction scenarios for the Maumee River watershed and used results from multiple models to inform the development of new Lake Erie phosphorus targets under Annex 4 of the Great Lakes Water Quality Agreement.

Keywords: University of Michigan Water Center, multiple model approach, watershed model, ecosystem model, climate model, Lake Erie, nutrients, Great Lakes

November 2016
Publication cover
Fact Sheet

This project will support the development of new, innovative visitor displays at three national estuarine research reserves - the Guana Tolomato Matanzas, Mission-Aransas, and Delaware Reserves. The reserves will partner with students at the University of Delaware to produce gesture controlled, educational computer games that promote interactive, learning opportunities. The experiential games will be designed for use on interactive screens that will be available for public use in each reserve’s exhibit hall. This project will provide communities with relevant, accessible science while offering civic-minded solutions and resources that encourage participants to take conservation-based action promoting ecosystem resilience.

 

Keywords: Guana Tolomato Matanzas, Mission-Aransas, and Delaware Reserves, University of Delaware, students, learning opportunities

October 2016
Publication cover
Fact Sheet

Sea-level rise and extreme weather events exacerbated by climate change currently impact Maine’s coastline and are anticipated to increase in frequency and strength. Beach-based businesses, a powerful economic engine for Maine, are generally little prepared for storm surge and coastal flooding. Yet lessons learned from previous disasters underscore how important the recovery of businesses is to the overall recovery of a region’s economy. 

This project will adapt and transfer the Tourism Resilience Index, previously developed for the Gulf of Mexico, to southern Maine. Coastal businesses in Kennebunkport and Kennebunk will be facilitated through a process to assess their ability to maintain operations during and after a disaster. Through this project, the Wells National Estuarine Research Reserve will collaborate with business leaders, municipalities, and regional climate adaptation professionals to generate outcomes that decrease Maine’s beaches business community’s vulnerability to natural disasters. 

 

Keywords: Maine, coastline, businesses, flooding, Wells National Estuarine Research Reserve

October 2016
Publication cover
Fact Sheet

This fact sheet provides an overview of a project that makes data and information compiled through the Chesapeake Bay Sentinel Site Cooperative readily available to ninth-grade earth science teachers to use in their classrooms and increase climate literacy. The project builds on a previous NOAA Bay Watershed Education and Training project titled, “Climate Education for a Changing Bay (CECB),” which provided watershed educational experiences integrated into the classroom curriculum for ninth-grade students in Gloucester County and Mathews County, Virginia.

Through the current project, the Chesapeake Bay-Virginia Reserve is building on the strengths of the previous years of CECB to extend the reach into Middlesex County, while developing an alumni program to support the program in Gloucester and Mathews. All three counties lie within a region experiencing relative rates of sea level rise greater than the global average.

 

Keywords: Chesapeake Bay-Virginia Reserve, Chesapeake Bay Sentinel Site Cooperative, Middlesex County, Virginia, University of Michigan Water Center, NERRS, Science Transfer Grants, climate literacy

October 2016
Publication cover
Fact Sheet

This factsheet provides an overview of a project focusing on the development and dissemination of communications products based on a recently conducted national synthesis of NERR Sentinel Site data. This synthesis applied indices of resilience to sea level rise to marshes in 16 National Estuarine Research Reserves across the United States to assess regional and national patterns in resilience. Initial results reveal strong contrasts for individual metrics across reserves, with many marshes receiving intermediate scores and a few sites at very high risk. This work not only represents the first national assessment of marsh resilience to sea level rise but also the first development and application of multi-metric indices.

Through this project, results will be transferred to a variety of end users and products and activities will be developed with end user feedback. Products include a publication in a high impact scientific journal, a short user-friendly summary of this publication, well-designed PowerPoint presentations for a variety of audiences, and a “do it yourself” tool so others can apply the novel marsh assessment approach to additional marshes. 

 

Keywords: marsh resilience, sea level rise, National Estuarine Research Reserve System, multi-metric indices, University of Michigan Water Center

October 2016
Publication cover
Fact Sheet

Climate change is having an impact on salt marshes in the southeastern United States through sea level rise, increases in air and water temperature, changes in precipitation patterns, and an increase in storm event intensity. However, the degree and intensity of these impacts vary from marsh to marsh, depending on local environmental conditions. Understanding this local variability is critical when making management decisions. Estuarine reserves in North and South Carolina are seeking to improve local understanding of climate change effects on southeastern marshes, and provide decision makers with the information and skills they need to address these vulnerabilities, by using the Climate Change Vulnerability Assessment Tool for Coastal Habitats, or CCVATCH. Created to help managers better understand the specific vulnerabilities of a habitat to climate change, this decision-support tool incorporates existing information on climate change impacts with knowledge of local conditions to help users develop vulnerability scores for specific areas.

For this project, North Carolina Reserve staff members will be fully trained in the application of the tool and facilitation of the assessment process by their colleagues from the North Inlet-Winyah Bay Reserve. The two reserves will work together to identify relevant resources and existing research needs and develop outreach products and activities.

Keywords: Climate change, marsh, Climate Change Vulnerability Assessment Tool for Coastal Habitats

October 2016

Pages