The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 8,048 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 20,000 square kilometers (95% credible interval, 13,500 to 26,500), an “above average year.”

Our forecast hypoxic volume is 83.1 km3 (95% credible interval, 53.1 to 113.2).

Figure 1: Mid-summer hypoxic area (Obenour et al 2013, N. Rabalais, LUMCON), with 2016 and 2017 forecasts in red. At time of this report, there were no measured data available for 2016.

Hypoxia in the Gulf of Mexico – The Gulf of Mexico hypoxic zone (i.e., the area of bottom water with oxygen concentrations below 2 mg/l) is the second largest human-caused zone of hypoxia in the world's coastal waters, second only to that in the Baltic. Important fisheries are impacted at these low oxygen levels because fish, shrimp, and crabs are forced to move from their preferred habitats and animals that cannot move away die. Above (Figure 1) is a graph showing the annual changes in hypoxic area derived from geospatial analysis (Obenour et al 2013) of observations from the Louisiana Universities Marine Consortium shelfwide cruises.
(Rabalais et al. 2002). Support for this work has been provided by NOAA’s Center for Sponsored Coastal Ocean Research since 1990 (http://www.cop.noaa.gov/).

Figure 2: Forecast track record showing model forecast and observed hypoxic area for each year since 2002. “Wind” and “Storm” year observations are indicated in red. Model calibration procedures have varied through time as more has been learned about the drivers of hypoxia in the Gulf. There were no observed hypoxia estimate in 2016.

Model track record – Hypoxic area forecasts have been generated each spring since 2002 and compared to the area measured later that summer (Figure 2). The model predicts mid-summer hypoxic area based on nitrogen load from the Mississippi River basin (Evans and Scavia, 2011). The model calibration has varied over the years as more has been learned about hypoxia in the Gulf, as described below. This year’s forecast uses an updated model that corrects for some of the differences observed in the historical track record. In general, forecasts have performed well. Removing the year 2009 (see below) and two years when tropical storms impeded measurement of the hypoxic area (2003 and 2005), these forecasts explained 70% of the variation in observed hypoxic area. Forecasts were notably off in storm years, but what factors contributed to the far smaller observed size of the dead zone than predicted in 2009? Dr. Nancy Rabalais reports it was likely due to unusual weather patterns that re-oxygenated the waters and persistent winds from the west and southwest in the few weeks preceding the mapping cruise, likely pushing the low oxygen water mass to the east and “piling” it up along the southeastern Louisiana shelf (see www.gulfhypoxia.net).

Updated Hypoxia Model – This year we are using the model calibration described in Scavia et al (2013). This calibration was conducted, in part, to account for deviations in the relationship of hypoxia to nutrient loads caused by weather events such as tropical storms and winds that compress hypoxia to the eastern shelf (as in 2009, Figure 2). This calibration uses the model developed originally to relate Gulf of Mexico hypoxic area to loads from the Mississippi and Atchafalaya Rivers (Scavia et al. 2003). This model has been used in comparisons to other models (Scavia et al. 2004), for exploration of nitrogen vs. phosphorus control (Scavia and
Donnelly 2007), to provide guidance for the 2001 and 2008 Gulf Action Plans (Task Force, 2001, 2008), and to explore potential impacts of climate-induced changes in nutrient delivery (Donner and Scavia 2007). It is an adaptation of the Streeter-Phelps river model that simulates oxygen concentration downstream from point sources of organic matter loads using mass balance equations for oxygen-consuming organic matter, in oxygen equivalents (i.e., BOD), and dissolved oxygen concentration (DO). Assuming no upstream oxygen deficit, and ignoring longitudinal dispersion, the model’s steady state solution for DO is

\[DO_y(x) = DO_s - \left(\frac{k_d \cdot BOD_{m,y}}{k_r - k_d} \right) \left(e^{-\frac{k_d x}{v}} - e^{-\frac{k_r x}{v}} \right), \text{ for } x < 220 \text{ km} \]

\[DO_y(x) = DO_s - \left(\frac{k_d \cdot BOD_{m,y}}{k_r - k_d} \right) \left(e^{-\frac{k_d x}{v}} - e^{-\frac{k_r x}{v}} \right) - \left(\frac{k_d \cdot BOD_{a,y}}{k_r - k_d} \right) \left(e^{-\frac{k_d (x-220)}{v}} - e^{-\frac{k_r (x-220)}{v}} \right), \text{ for } x \geq 220 \text{ km} \]

Where: \(y \) = year index, \(x \) = distance from the Mississippi River mouth (km), \(DO = \) DO (mg L\(^{-1}\)), \(DO_s = \) DO saturation concentration (mg L\(^{-1}\)), \(k_d = \) first order organic matter decay rate (d\(^{-1}\)), \(k_r = \) first order reaeration rate of the lower layer (d\(^{-1}\)), and \(BOD = \) BOD load for the Mississippi (m) and Atchafalaya (a) rivers. In the original Streeter-Phelps model for rivers, \(v \) represents the downstream velocity in km d\(^{-1}\). However, in this application, its interpretation is more complicated because it represents a combination of the net effect of surface and bottom layer flow and sinking of organic matter into the bottom layer.

Organic matter load and associated oxygen demand (BOD) was approximated by multiplying May TN loads by the Redfield ratio to convert nitrogen to algal carbon (5.67 gCgN\(^{-1}\)), and by assuming an oxygen equivalent (e.g. respiratory ratio) of 3.47 gO\(_2\)gC\(^{-1}\). We assumed 50\% of the Mississippi River load moved east or offshore and did not contribute to hypoxia development (Dinnel and Wiseman, 1986), and that all of the surface algal production settled into the bottom waters.

The model produces a DO concentration profile stretching from the mouth of the Mississippi River toward the Louisiana-Texas border. From that profile, we determined the total length for which DO < 3 mg L\(^{-1}\). A value of 3 mg L\(^{-1}\) was used because that average sub-ypnocline DO concentration roughly corresponds in time to a bottom water DO concentration of 2 mg L\(^{-1}\) and hypoxic conditions (Scavia et al. 2003). Hypoxic length is then converted to area (\(area_y \)) using an empirical formula determined from geospatial model output: \(area_y = 57.8 \times length_y \).

Hypoxic volume (\(vol_y \)), when estimated, was calculated as: \(vol_y = area_y \times \text{thickness} + area_y^2 \times \tau \) (Scavia et al. 2013)

This revised model calibration allows categorical parameter estimates for \(k_2 \) and \(v \), based on the presence or absence of storms and strong westerly winds (Scavia et al. 2013), and is calibrated to new area and volume estimates for 1985-2011 that are based on geostatistical estimation procedures (Obenour et al. 2013). The current forecast uses this model calibration as applied to years without strong storms or winds and is drawn from the response curve of hypoxia vs. nutrient load in Scavia et al (2013).

Bayesian calibration - Calibration was conducted using Markov Chain Monte Carlo (MCMC) implementation of Bayes Theorem using WinBUGS (version 1.4.3) called from R (version 2.6.0, R2WinBUGS, version 2.1-8). The use of Bayesian calibration allows all parameters and
predictions to be represented as probability distributions, thus ensuring propagation and quantification of uncertainty. All MCMC calibrations were run until full mixing was achieved between three independent chains. Mixing was monitored using the ratio of among chain to within chain variance (r^2), and chains were considered mixed when $r^2 < 1.1$ for all parameters.

Nutrient Loads - A substantial body of scientific evidence links long-term changes of this hypoxic region to loads of nitrogen from the Mississippi River system (e.g., Scavia and Donnelly 2007, Justić et al. 2002; Turner et al. 2007, 2012). Previous forecasts have been based on various loads (e.g. NO$_3$ vs. TN; May-June, vs. May; etc). This version has been calibrated with May TN loads. The graph below (Figure 3) represents those loads from the Mississippi basin between 1985 and 2017 from the USGS LOADEST AMLE method (http://toxics.usgs.gov/hypoxia/mississippi/oct_jun/index.html).

Figure 3: May total nitrogen loads from the Mississippi and Atchafalaya Rivers since 1985. The Mississippi load is the red area and the Atchafalaya load is the blue area such that the height of the combined shaded areas is the total load.

References –

Evans, M.A. and D. Scavia. 2010. Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: Model accuracy, precision, and sensitivity to ecosystem change. Environmental Research Letters 6: 015001

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.