EVAPORATION ON THE GREAT LAKES

Kevin FriesBranko KerkezAndrew GronewoldUoM CEEUoM CEENOAA, UoM CEE

 \bigcirc M

Great Lakes Evaporation

Kevin Fries (PhD Student), John Lenters (LimonTech), Andrew (NOAA)

Water level fluctuations

The dipping water levels in Lake Michigan have left docks out of the water and beaches extending hundreds of feet into West Grand Traverse Bay northwest of Traverse City. (John L. Russell / Great Lakes Images)

Measurements

Source: Great Lakes IMDS

Precipitation

Flow

GLEN

Great Lakes Evaporation Network

More overlake evaporation measurements are needed

Great Lakes Evaporation Network (GEEN)

Measuring Evaporation

Eddy Covariance

Energy Balance

 \bigcirc M

Measuring Evaporation

Energy Eddy **Balance** Covariance SW LW Е Π Licor

Eddy Covariance Instrumentation

Measuring Evaporation

Eddy Covariance

Licor

$$E \approx \frac{R_{net} - S + Q_{sed}}{1 + B + c_w/L_v(T_s - T_L)}$$

E:	Evaporation rate
R _{net} :	Net radiation (shortwave and longwave)
S:	Rate of heat storage in lake
Q _{sed} :	Sediment heat flux
B:	Bowen ratio (= k $\overline{U \cdot \Delta T} / \overline{U \cdot \Delta e}$)
c _w :	Specific heat of water
L _v :	Latent heat of vaporization
T _s :	Water surface temperature
T _L :	Average lake temperature

Energy Balance

Solve for evaporation by measuring energy budget

Can be very accurate (5-10%)

Measure: relative humidity, wind, air and water temperature, radiation

Lenters (2014)

Solve the energy balance in real-time

Hukseflux Net Radiometer

Vaisala Hygrometer

Bowen Ratio drifter

Only measures variables related to Bowen Ratio Simpler, cheaper, but requires calibration constant (k)

Drifter

150WX Wind, Temp/RH

Thermocouple

SBD Iridium Satellite Module

A Hierarchical architecture for evaporation data

🔘 <mark>M</mark>

Buoy

Drifters

Preliminary Results

	Average
August	135 mm
September	175 mm
October	205 mm

Motivation

- Temperature
- Dew Point
- Wind Speed
- Wind Direction
- Air Pressure
- SST
- Radiation
- Cloud cover

Source: GLERL CoastWatch

Motivation

2014: all observations

Optimal Sensor Placement

Thank You

Fred A. and Barbara M. Erb Family Foundation

Solve the energy balance in real-time

Calibration constants Once energy balance is solved, a correlation between evaporation and vapor pressure arises

$$E = kU\Delta e$$

Lenters (2012, 2014)

Bowen Ratio Energy Balance (BREB)

Use buoy data to calibrate drifter readings

