1	
2	Detroit River Phosphorus Loads: Anatomy of a Binational Watershed
3 4	Donald Scavia ^{a,*} , Serghei Bocaniov ^b , Awoke Dagnew ^c , Yao Hu ^d , Branko Kerkez ^d , Colleen
5	Long ^e , Rebecca Muenich ^f , Jennifer Read ^e , Lynn Vaccaro ^e and Yu-Chen Wang ^e
6 7	
8 9	^a School for Environment and Sustainability, University of Michigan, 440 Church St., Ann Arbor, MI 48104, USA
10 11	^b Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
12 13	^c Environmental Consulting and Technology, Inc., 2200 Commonwealth Blvd, Ann Arbor, MI 48105, USA
14 15	^d Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward, 2044 GG Brown, Ann Arbor, MI 48109, US
16 17	^e Graham Sustainability Institute, University of Michigan, 214 S. State St., Ann Arbor, MI 48104, USA
18 19	^f School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Ave., Tempe, AZ 85281, USA
20	
21	*Corresponding author: Donald Scavia (scavia@umich.edu)
22 23	Key Words: Detroit River; Phosphorus; Nutrient Loads; Lake Huron; Lake Erie; Load Reduction

25 Abstract

26 As a result of increased harmful algal blooms and hypoxia in Lake Erie, the US and Canada 27 revised its phosphorus loading targets under the 2012 Great Lakes Water Quality Agreement. The focus of this paper is the Detroit River and its watershed, a source of 25% of the total 28 29 phosphorus (TP) load. Its load declined 37% since 1998, due chiefly to improvements at the 30 regional Great Lakes Water Authority Water Resource Recovery Facility (WRRF) in Detroit (WRRF) and phosphorus sequestered by zebra and quagga mussels in Lake Huron. In addition to 31 32 the 54% of the load from Lake Huron, nonpoint sources contribute 57% of the TP load and 50% 33 of the dissolved reactive phosphorus load, with the remaining balance from point sources. After 34 Lake Huron, the largest source is the WRRF, which has already reduced its load by over 40%. 35 Currently, loads from Lake Huron and further reductions from the WRRF are not part of the 36 reduction strategy, therefore remaining watershed sources will need to decline by 72% to meet 37 the Water Quality Agreement target- a daunting challenge. Because other urban sources are very 38 small, most of the reduction would have to come from agriculturally-dominated lands. The most effective way to reduce those loads is to apply combinations of practices like cover crops, buffer 39 40 strips, wetlands, and applying fertilizer low below the soil surface on the lands with the highest 41 phosphorus losses. However, the simulations suggest even extensive conservation on those lands 42 may not be enough.

43

44

45

47 Introduction

Among the Laurentian Great Lakes, Lake Erie is the warmest, shallowest, and most productive, 48 contributing to its sensitivity to nutrient inputs. In the 1960s and 70s, increasing phosphorus 49 50 inputs led to severe algal blooms in its western basin and periods of low oxygen (hypoxia) in the 51 bottom waters of its central basin. Phosphorus abatement programs, initiated in response to the 52 1972 Great Lakes Water Quality Agreement (GLWQA), prompted wastewater treatment 53 facilities to add secondary treatment, removed phosphorus from most soaps and detergents, and enhanced land conservation programs, resulting in substantial water quality improvements 54 (DePinto et al, 1986, Ludsin et al. 2001). 55 56 However, in the mid-1990s, harmful algal blooms and hypoxia returned to conditions similar to 57 the 1960s and 70s (Scavia et al. 2014). Results from a synthesis of models (Scavia et al. 2016) showed that the increasing spring load of dissolved reactive phosphorus (DRP) from the 58 Maumee River was the primary driver of the western basin blooms, and that the annual load of 59 total phosphorus (TP) to the western and central basins was the primary driver of hypoxia (Zhou 60 et al. 2015, Bridgeman et al. 2013, Michalak et al. 2013, Scavia et al. 2014, 2016; Rucinski et al. 61 62 2014, 2016; Obenour et al. 2014, Stumpf et al. 2016; Bertani et al. 2016; Bocaniov et al. 2016). 63 In 2012, the US and Canada revised the GLWQA, calling for new Lake Erie phosphorus loading 64 targets and associated action plans. In response to this commitment, they adopted the following targets, each compared to a 2008 baseline (GLWQA 2016). 65

66

• For central-basin hypoxia, a 40% reduction in the western and central basin TP load.

67	• For healthy nearshore ecosystems, a 40% reduction of spring (March-July) TP and DRP
68	loads from the Thames River, Leamington tributaries, Maumee River, River Raisin,
69	Portage River, Toussaint Creek, Sandusky River, and Huron River (Ohio).
70	• For western-basin algae blooms, a 40% reduction in Maumee spring TP and DRP loads.
71	US and Canadian domestic action plans placed substantial attention on loads from Detroit and
72	Maumee rivers because they contribute, respectively, 41% and 48% of the TP load to the western
73	basin, and 25% and 29% of the TP load to the whole lake (Maccoux et al. 2016; Scavia et al.
74	2016). The plans were developed within adaptive management frameworks and the initial phase
75	of review and potential adaptation is underway in 2019.
76	There have been several assessments of the relative contributions and potential controls of
77	phosphorus loads from the Maumee watershed (e.g., Scavia et al. 2017, Muenich et al. 2016,
78	Kalcic et al. 2016). However, the sources of nutrients contributing to the Detroit River load have
79	been somewhat uncertain due to limited data and an historical lack of attention to its watershed,
80	which includes both intensive agriculture and major urban areas. This river system is also
81	complicated by the presence of the large, shallow Lake St. Clair, which processes the nutrient
82	load from its 15,000 km ² watershed, as well as from the St. Clair River. Whether the lake is an
83	ultimate source of, or sink for, phosphorus, and whether loads from its different tributaries (e.g.,
84	Clinton, Sydenham, Thames, St. Clair rivers) have equally significant impacts downstream, have
85	been unclear. It has also been difficult to measure accurately the Detroit River load because it is
86	not well mixed in transverse direction to flow, requiring extensive sampling across the river and
87	over time, and because Lake Erie storm surges and seiches occasionally can push lake water into
88	the river (Derecki and Quinn, 1990), introducing large uncertainties and hampering estimates of
89	river discharge and nutrient load.

90 Understanding nutrient sources is critical for developing load reduction plans and for deciding 91 the level of emphasis that should be placed on different tributaries or different source types (e.g., 92 point sources, agricultural runoff). To help reduce these uncertainties, this project set the 93 following objectives with the help of stakeholders from the public and private sectors: 1) 94 estimate how different sources contribute to the Detroit River phosphorus load to Lake Erie, and 95 2) evaluate options for reducing those loads.

96

97 METHODS

Study region - The St. Clair-Detroit River system (Figure 1) receives water and nutrients from 98 Lake Huron and the 19,040 km² watershed that covers parts of southeastern Michigan (40% of 99 100 watershed area) and southwestern Ontario (60% of watershed area). It delivers nutrients to Lake Erie through the Detroit River. The Detroit River provides approximately 80% of the water flow 101 102 into Lake Erie and 25% of the lake's annual TP inputs, and its phosphorus concentrations are 103 relatively low compared to the Maumee River. Because of the low concentrations and high flow, 104 it tends to dilute nutrients in the western basin, creating a zone where the Detroit River and the 105 western basin water mix, and algae and total suspended solids concentrations are low (Figure 106 S1). However, the river's annual TP load contributes significantly to central-basin algal 107 production and ultimately to the extent of hypoxia there. 108 The watershed is composed of about 49% cropland, 21% urban area, 13% forest, 7% grassland, and 7% water bodies (Dagnew et al. 2019a). Overall, 79% of the watershed's agricultural land is 109

in Canada and 83% of the urban land is in the US. The Clinton and Rouge sub-watersheds are

111 heavily urbanized (about 56% and 89% urban, respectively), whereas the St. Clair, Sydenham,

and Thames sub-watersheds are dominated by agriculture (63%, 89%, and 87% agricultural,respectively).

114 The US portion of the watershed has three watersheds (St. Clair, Clinton, and Rouge) drained 115 primarily by the Black, Clinton, and Rouge rivers, respectively. These sub-watersheds often include multiple drainage areas. For example, in addition to the Black, the St. Clair sub-116 117 watershed includes the Pine and Bell river systems (see Figure 9 below), and the Rouge sub-118 watershed includes the Rouge River system as well as land that drains directly in the Detroit 119 River. The Canadian portion of the watershed has three tertiary watersheds (Upper Thames, 120 Lower Thames, and Sydenham) drained by the Thames and Sydenham rivers. The study region 121 also includes the Essex watershed in Canada and the Lake St. Clair watershed in the US. Five of the six sub-watersheds drain into the 1115 km², 4.25 km³ Lake St. Clair (Figure S2), a 122 123 shallow, polymictic lake with a mean depth of 3.8 m, a maximum natural depth of 6.5 m, and an 8.2 m deep navigation channel (Bocaniov and Scavia, 2018). It processes water and phosphorus 124 125 from lakes Superior, Michigan, and Huron via the St. Clair River, as well as from its proximate 15,000 km² watershed that is roughly 63% in Canada and 37% in the United States. While the 126 127 lake's theoretical flushing time is roughly 9 days, that flushing time varies seasonally and, more 128 significantly, spatially (Bocaniov and Scavia, 2018) such that during summer, water in the south-129 eastern part of the lake flushes more slowly than the north-western part. This, in combination with different timing and magnitude of tributary loads, leads to spatial segmentation of primary 130 production resulting in the northwest part of the lake being oligotrophic and southeast part 131 mesotrophic. 132

As part of this assessment, three urban regions received special focus. The National Land Cover
Database (NLDC, 2011) and the Annual Crop Inventory (Agriculture and Agri-food Canada

135	2011) were used to select HUC-12 subbasins with more than 80% urban land cover in the US
136	and more than 60% in Canada (Hu et al. in review). This resulted in study areas in southeast
137	Michigan and around London, Ontario and Windsor, Ontario (Figure 2), and more accurately
138	captured urban areas than using political boundaries. The Michigan urban study area covered
139	2,390 km ² with over 3.1 million people. It includes the Great Lakes Water Authority's Water
140	Resource Recovery Facility (GLWA WRRF), one of the largest wastewater treatment facilities
141	in the world, treating sewage from 3 million residents across 77 communities, as well as
142	stormwater from the region's combined sewer system. The Windsor and London areas cover 149
143	km ² and 138 km ² , respectively, with populations of 211,000 and 366,000.
144	Models – The assessment was built on the construction and use of four models (Figure 2) that
145	collectively simulate the dynamics of this complex watershed.
146	• A nutrient mass balance model based on closed water budget and accounting for all
147	phosphorus inputs and outputs on a water-year annual basis between 1998 and 2016
148	(Scavia et al. 2019a), and an accounting of phosphorus sources from within the three
149	major urban areas (Hu et al. in review).
150	• A watershed model simulating flow and dynamics of water, nutrients, and sediment on
151	daily-to-annual time scales for 2001-2015, based on the Soil and Water Assessment Tool
152	(SWAT) (Dagnew et al. 2019a).
153	• A 3-dimensional (3D) coupled hydrodynamic and ecological model of Lake St.
154	Clair (ELCOM-CAEDYM) simulating thermo- and hydrodynamics, nutrient and algal
155	dynamics for 2009 and 2010 (Bocaniov and Scavia 2018).

156

157

• An urban model simulating the Great Lakes Water Authority (GLWA) sewer service area based on the Storm Water Management Model (SWMM) (Hu et al. 2018).

Project Guidance - An advisory group was established at the project inception to help 158 understand policy contexts, and provide feedback on approach and resulting products. The group 159 160 included US and Canadian representatives from federal, state, and provincial governments; regional conservation authorities; non-profits; universities; and local organizations actively 161 162 involved in watershed management, policy development, or research (Scavia et al. 2019b). 163 Through more than a dozen in-person meetings, periodic conference calls, and individual consultations, the 30-person advisory group helped ensure the research would be credible 164 165 scientifically, and the results would be relevant and usable for the Great Lakes policy and 166 management communities. Preliminary interviews and ongoing feedback from the group helped identify key areas of interest, potential concerns, and new data sets and related projects that 167 168 influenced the team's approach, baseline assumptions, and specific scenario analyses for modeling runs (Goodspeed et al. 2018). Although all members of the advisory group had 169 170 opportunities to comment on project results and research summaries, the content of this paper is solely the responsibility of the project team. 171

Mass balance estimates - Scavia et al. (2019a) compiled and analyzed data from US and Canadian water quality monitoring programs between 1998 and 2016 (Tables 1, 2, Figure S3), and used the Weighted Regressions on Time, Discharge and Season (WRTDS) method (Hirsch et al. 2010) to calculate tributary phosphorus loads based on concentrations and flow data for gauged tributaries. Area-weighted estimates based on nearby streams were used for unmonitored areas prior to adding upstream point sources (see Figure 9 below). Because WRTDS is not appropriate for the connecting channel (St. Clair and Detroit rivers), their loads were estimated 179 by multiplying flow times concentrations. Atmospheric loads to Lake St. Clair were from 180 Maccoux et al. (2016), and loading from Lake St. Clair shoreline erosion was estimated by multiplying the shoreline length by the annual P loading rate for the Lake St. Clair basin 181 (Monteith and Sonzogni 1976). Monthly industrial and municipal point source data were 182 183 collected from US EPA, the Great Lakes Water Authority, and the Ontario Ministry of 184 Environment and Climate Change databases (Scavia et al. 2019a). Urban runoff was calculated based on precipitation and impervious area (Arnold et al. 2012). 185 Lake St. Clair analysis - Lake St. Clair's annual phosphorus retention estimates were based on 186 187 the TP and DRP mass balances (Scavia et al. 2019a) for water years 1998-2016. Whole-lake 188 estimates, as well as estimates at smaller spatial and temporal scales for 2009 and 2010 were based on a three-dimensional ecological model (Bocaniov et al. in review). In both cases, 189 percent retention was calculated as the sum of all inputs minus outputs, divided by inputs. The 190 191 previously calibrated, validated, and applied ecological model (Bocaniov and Scavia 2018) was 192 the Computational Aquatic Ecosystem Dynamic Model (CAEDYM) driven by the 3D 193 hydrodynamic model (Estuary, Lake and Coastal Ocean Model: ELCOM). For this application,

the model simulates dynamics of phosphorus, nitrogen, silica, oxygen, carbon and total

suspended solids, and five functional groups of phytoplankton (Bocaniov et al. 2016, Bocaniov

and Scavia 2018). This model was also used to explore the relationship between major tributaryloads to the lake and loads leaving the lake.

Watershed analysis - The Soil and Water Assessment Tool (SWAT) was applied to the full
watershed to explore options for reducing TP and DRP loads (Dagnew et al. 2019a, b). The
watershed was divided into 800 subbasins, approximately 24 km2, and each sub-basin was
further divided into Hydrologic Response Units (HRUs) corresponded to farm fields

202 (approximately 171 acres each), the first time this has been done for a watershed of this size. 203 Given the variability in agricultural management between the US and Canada, the advisory group was engaged extensively over the course of the project to both verify and augment the 204 available data and to provide new data where appropriate (Scavia et al, 2019b). The model was 205 calibrated (2007-2015) and validated (2001-2006) to loads estimated from measurements at the 206 207 mouths of the six major tributaries (Figure 3) at daily, monthly, and annual time scales, and then used to simulate loads from each of those tributaries. Simulation results were reported for each 208 of these major tributary watersheds, and neighbor watersheds with similar characteristics were 209 210 assumed to respond similarly (e.g., the Black for the Belle and Pine; the Thames for the Essex). 211 The model was then used to test the watershed's sensitivity to seven practices. Reduced nutrient application rates (Rate), subsurface placement of nutrients (PL), controlled drainage, and cover 212 crops (CC) practices were applied to all croplands. The wetlands (WT), filter strips (FS), and 213 grassed waterways practices were applied to all lands, including permeable urban areas. Based 214 on analysis of the individual practices and discussions with the advisory group, five bundles of 215 practices were selected, and each bundle was evaluated under three adoption strategies: (1) 216 applied to all appropriate land, (2) applied randomly to 55% of the appropriate land¹, and (3) 217 218 focused on the 55% of the land with high TP or DRP yields (Dagnew et al. 2019b). When applied in bundles: WT assumed that 1% of every subbasin's land area was converted to a 219 wetland and those wetlands were positioned such that 50% of the flow in a sub-basin passed 220 221 through them; PL placed 80% of nutrients sub-surface and 20% on the surface; FS assumed 1.7% of a farm field was converted from crops to a filter strip/buffer strip; CC assumed cereal rye was 222

¹ Here, and throughout this paper, "appropriate lands" are lands where a practice can be implemented. For example, cover crops, subsurface placement, and fertilizer reduction can only be implemented in croplands while wetlands can be implemented for any land use type.

planted in the fall on fields growing corn and soybeans; and Rate assumed a 25% reduction in Nand P inputs to a farm field, including both inorganic fertilizers and manure.

Urban analysis – To examine the effects of green infrastructure across broad urban/suburban 225 226 areas, Dagnew et al. (2019b) used SWAT to test the effects of increasing pervious area with and 227 without additional vegetation in urban areas in the Clinton and Rouge watersheds (Figure 1) To explore the potential for reducing combined sewer overflows (CSOs) in the GLWA WRRF 228 sewer service area (Figure 2), the calibrated Storm Water Management Model (SWMM), which 229 included 402 subcatchments with unique land cover, soil, gray infrastructure, and connectivity 230 (Hu et al. 2018) was used. The model was calibrated for volume at outfalls of 12 retention basis, 231 232 two wet weather outfalls at the WRRF, and inflows to the WRRF. To identify subcatchments that contribute most to wet weather discharge at the WRRF as well as to the total system CSO 233 volume, rainfall was eliminated for one subcatchment at a time, and the resulting percent 234 235 reductions were calculated. This analysis is analogous to converting that catchment to a separate 236 stormwater system. The model was also used to simulate implementing two forms of green infrastructure under average and extreme storms (Hu et al. in review). 237

238

239 **RESULTS**

240 New estimates for the Detroit River load

241 **Phosphorus from Lake Huron dominates the Detroit River load -** Burniston et al. (2018)

noted that the TP concentrations entering Lake St. Clair were considerably higher than those

leaving Lake Huron, especially for particulate P. Scavia et al. (2019a) found similar results, and

showed that the difference was not caused by additional phosphorus from the St. Clair River

245	watershed. They estimated that 54% of the Detroit River load originates in Lake Huron.
246	Satellite imagery revealed frequent large sediment resuspension events along Lake Huron's
247	southeastern shore that can persist for days and evade detection at the two monitoring stations.
248	While sampling at the Point Edward station could detect such events, it was shown to be not
249	frequent enough to catch many of them (Scavia et al. 2019a). This unmeasured load increased
250	over the study period from 2001-2016, in concert with climate-driven declines in ice cover and
251	increased frequency of large storms, approaching the sum of the measured loads from Lake
252	Huron and the St. Clair River watershed (Figure 4).
253	This updated estimate of the Lake Huron contribution does not impact the Scavia et al. (2019a)
254	or Burniston et al. (2018) estimates of the Detroit River load because they are based on
255	measurements at the outlet of Lake St. Clair and measurements in the Detroit River, respectively,
256	effectively capturing the full Lake Huron contribution. However, as discussed below, this
257	unmeasured load does impact our understanding of the relative importance of different nutrients
258	sources and therefore the potential allocation of load reduction targets.
259	After Lake Huron, the largest phosphorus contributors are nonpoint sources, followed by the
260	WRRF in Detroit and other point sources (Figure 5a). Average annual TP loads from the US
261	(798 MTA) are higher than those from Canada (601 MTA).
262	Lake St. Clair is a TP sink – On average between 2001 and 2015, Lake St. Clair retained 20%
263	of its TP inputs annually (Scavia et al. 2019a), albeit with substantial inter-annual variability
264	(Figure 5b). While measurements of DRP are less reliable, it appears that its annual retention is
265	much lower, perhaps approaching zero. Results from the ecological model (Bocaniov et al. in
266	review), indicated that, for the simulation period March through October, 17.3% of the TP was
267	retained and 34.8% of the DRP was retained. This seasonal TP retention rate is slightly lower

268 than the annual rate, likely because the model could only run for the ice-free season, and ice 269 cover would increase retention via reduced mixing and elevated settling rates during times when ice-cover shields the lake surface from the wind stress. The model's high seasonal DRP 270 retention is driven by rapid uptake by algae during the growing season. To the extent that the 271 272 annual DRP retention rate is accurate, it suggests that much of the DRP retained during the 273 growing season is recycled back into the water and exported during the colder months. 274 Scavia et al. (2019a) suggested zebra and guagga mussels could have contributed to the sequestration of phosphorus into the bottom sediment of Lake St. Clair. Nalepa et al. (1991) 275 estimated that the mussel-related TP retention between May and October represented about 8.6% 276 277 of the external TP load during the same period, but because the study was done prior to the zebra and quagga invasion, they suggest that value is likely an underestimate. Lang et al. (1988) 278 estimated macrophyte growth to be roughly 7% of TP loads. So, together these could account 279 280 for much of the retention. However, Bocaniov et al. (in review) showed that wave-induced bottom shear stress (the driver of sediment resuspension in shallow lakes) is not strong enough to 281 resuspend sediments in the 30% of the lake with depths greater than 5 m. So, deposition of 282 sediment in those areas is also a likely contributor to phosphorus retention. They also showed 283 284 that both TP and DRP retention rates are correlated negatively with average wind speeds, 285 suggesting that wind-dependent resuspension in the other 70% of the lake could explain the year-286 to-year variability in the annual retention estimates (Figure 5b).

Revised Detroit River loads – As described above the new Lake Huron load estimate and Lake
St. Clair retention estimates are important, but they do not affect the updated Detroit River TP
load estimates because those are based on the load leaving Lake St. Clair. The new estimates
(Scavia et al. 2019a) (Figure 5c) are higher than those estimated by Maccoux et al. (2016) and

lower for two of the three years estimated by Burniston et al. (2018). The variations among these estimates are likely because the Maccoux et al. used the earlier low estimate for the Lake Huron load, and Burniston et al. used LOADEST (Runkel 2013), which may not be appropriate for connecting channels. The Detroit River load declined roughly 37% from 1998 to 2016 due to declines in Lake Huron phosphorus concentrations after the 2000-2005 invasion of zebra and quagga mussels, and significant improvements in WRRF operations around 2010. There was no statistically significant trend in other sources over this time period.

298 **Options for reducing loads**

Meeting a 40% reduction for the Detroit River – A 40% reduction from the updated 2008
Detroit River load estimate (3,096 MTA, Scavia et al. 2019a) results in a 1,858 MTA target. Our

sol estimates indicate the Detroit River TP load has already declined to 2,425 MTA (based on an

average for 2013-2016), so 567 MTA remains to be reduced (Figure 6). This is equivalent to

303 23% of the phosphorus load coming from all sources, including Lake Huron. .

After Lake Huron, the largest sources of phosphorus are the WRRF, followed by the Thames

River watershed, unmonitored loads to Lake St. Clair, and the Sydenham and Clinton river

306 watersheds (Figure 7). The remaining 10% comes from unmonitored load to the Detroit and St.

307 Clair rivers, and the Black, Rouge, Belle, and Pine river watersheds.

308 *Contributions and potential reduction of point sources* – Point sources contribute 43% of the 309 TP watershed load (that is, the load excluding the Lake Huron contribution) and 50% of the 310 watershed DRP load. When considering point source contributions, roughly 83% of the TP load 311 and 85% of the DRP point source loads come from the US (Figure 8), representing 15% and 25%

of the Detroit River's TP and DRP loads to Lake Erie.

313	Detroit's WRRF's TP load declined by 44.5% since 2009 (MDEQ 2016; Hu et al. in review), but
314	still currently contributes 54% of the total point source TP and DRP load. However, while
315	beyond the scope of this study, treatment processes and technologies will likely continue to
316	improve, and it could be possible for some of these advances to be implemented in the future.
317	While non-trivial in technological, human resource, and financial costs, improving treatment
318	operations could potentially have one of the biggest impacts on reducing the watershed's
319	phosphorus load. Treatment improvements at some of the other point source facilities could also
320	be possible. Beyond that, the focus in urban areas turns to CSOs and runoff, and they each
321	constitute only about 2% of the Detroit River's load to Lake Erie.
322	Because both CSOs and runoff are primarily driven by rainfall and the amount of impervious
323	surface (Dagnew et al. 2019b, Hu et al. in review), reducing phosphorus load from these sources
324	would likely require increasing pervious areas. SWAT analyses (Dagnew et al. 2019b) for the
325	Rouge and Clinton watersheds demonstrated that both TP and DRP loads are reduced as pervious
326	surfaces increase, and that because of increased evapotranspiration, the reductions were roughly
327	doubled if a transition from impervious to pervious cover included added vegetation. The
328	SWMM analyses (Hu et al. in review) suggested that within the WRRF sewer service area, green
329	infrastructure such as bioretention cells and increasing pervious areas could work well for some
330	upper reaches of the system, but more complex interventions are likely needed downstream.
331	Contribution and potential reduction of nonpoint sources – Nonpoint sources contribute 57%
332	and 50% of the TP and DRP loads from the watershed, respectively. Dagnew et al. (2019b)
333	estimated that 59% of the watershed's nonpoint source TP and 68% of the nonpoint source DRP

come from Canadian agricultural lands, compared to 12% and 6% from US agricultural lands.

Runoff from urban and suburban lands make up about 10% of the watershed's nonpoint sourceTP and DRP loads. (Figure 9).

337 Estimated loss of nonpoint source DRP and TP per hectare (loss yields) from agricultural lands 338 showed that losses were generally higher in Canada than in the US, especially for DRP (Figure 10). While this difference may be due to higher fertilizer application rates and more intense 339 340 drain tile spacing in Ontario, running the SWAT model with the same fertilizer application rates 341 and tile systems in both the US and Canada produced essentially the same patterns in loss yields. 342 Thus, those differences are more likely driven by differences in precipitation and soil 343 characteristics (Figure S1). Those characteristics in Canada are more similar to the Maumee River watershed, which delivers almost half of the phosphorus to the western basin. While the 344 345 slopes in both the US and Canadian agricultural areas are similar to the Maumee, average annual precipitation in the upper Sydenham and Thames is similar to that in the Maumee watershed 346 and greater than that in the St. Clair and Detroit River watersheds. Similarly, the Canadian soils 347 are largely poorly drained like those in the Maumee, whereas the US soils are well drained 348 349 (Figure S4). Edge of field analysis, by the Watershed Evaluation Group at the University of 350 Guelph, for a very small (19.5 km2) subbasin (Upper Medway watershed) within the Upper 351 Thames watershed indicated that average TP yield (2002-2016) at field level ranges from 0.25 -352 5 kg/ha, averaging at 0.62kg/ha at the subbasin outlet (WEG 2018), which is similar to the results of this study. 353

The highest single-practice TP and DRP load reductions were achieved with wetlands (WT), followed by filter strips (FS), subsurface placement of nutrients (PL), cover crops (CC), and reduced fertilizer application rates (Rate) (Dagnew et al. 2019b). The edge of field study for the Medway watershed (WEG 2018) indicated that TP and DRP reduction by using wetlands, buffer 358 strips, and grassed waterways vary among fields. As a result, even with the extreme case of 359 100% adoption, none of the practices implemented alone achieved a 40% load reduction at their sub-watersheds' outlets. Hence, the need for implementation of multiple practices seems 360 inevitable. In our analysis, the bundle of practices that included filter strips, wetlands, and cover 361 362 crops on 100% of the appropriate lands performed best, followed by one that included fertilizer 363 subsurface placement, wetlands, and cover crops (Figure 11). These bundles each reduced TP and DRP loads from the agriculturally-dominated Sydenham, Thames, and Black river 364 watersheds by as much as 60-80%. Other combinations could potentially achieve at least a 40% 365 366 reduction from those watersheds (Dagnew et al. 2019b).

The CC-PL bundle performed almost as well as CC-PL-Rate bundle, suggesting that it may not be necessary to reduce fertilizer application rates if cover crops and subsurface placement of fertilizer are implemented. Adding filter strips to the CC-PL bundle further decreased the TP and DRP loads from the Sydenham and Thames rivers, and it was particularly effective for reducing the TP load from the Black watershed.

372 Dagnew et al. (2019b) also showed that placing the practices on just the 55% of the land with the highest TP and DRP yields also surpassed target-level reductions. For example, a 55% focused 373 implementation of CC-FL-WT could achieve a 50% load reduction in the Sydenham sub-374 375 watersheds for both TP and DRP (Figure 11, upper right). The Thames River may require slightly more than 55% to reach the same reduction levels. It is important to note, however, that 376 while the model demonstrates the benefits of focusing practices on high phosphorus loss lands, 377 378 in practice those areas will have to be identified on the ground using farm- or field-level management information (e.g., Muenich et al. 2017). 379

380 The Thames River - The binational agreement also calls for a 40% reduction in spring (March-July) TP and DRP loads for, among other watersheds, the Thames River. So, we tested the 381 impacts of key bundled scenarios on the Thames River spring load and the Sydenham and Black 382 rivers for comparison. In testing the bundle most effective for annual TP reductions (CC-FS-383 384 WT), one that replaced cover crops with subsurface placement (PL-FS-WT), and one that tested 385 fertilizer application rates and subsurface placement (Rate-PL), Scavia et al (2019b) showed that in all cases, the spring load reductions equal or surpass the annual load reductions for those sub-386 watersheds (Figure 12). Thus, practices selected to address annual TP loads would also be 387 388 effective for spring TP and DRP loads.

389 The Thames River is also of particular importance because changes in its load lead to more substantial changes in the load leaving Lake St. Clair (Bocaniov et al. in review). That load, 390 along with re-suspended material, is transported along the shallower east and southeast shore 391 392 toward the lake's outflow. In addition, its load is largest in late winter, early spring, and late fall when algal uptake is low and circulation favors shorter river water residence times (~11 days). 393 In contrast, the Sydenham is located further from the lake outlet and separated from it by a basin 394 deep enough (\geq 5 m) to support sediment accumulation. However, as Bocaniov et al. (in review) 395 pointed out, because the load to Lake St. Clair is dominated by the St. Clair River, even a 50% 396 397 decrease in any of its other tributaries would result in a less than 5% decrease in the load leaving the lake. 398

Climate change will likely make reaching targets more difficult - Using the delta change
method based on six downscaled climate model results for the Maumee River Watershed, Scavia
et al. (2019b) used monthly average precipitation and temperature changes between the present
(1996-2015) and mid-century (2046-2065) to assess the potential impacts of climate change. All

but one climate model projected increases in annual precipitation, and all models projected an increase in temperature. The 6-model average changes in annual precipitation and temperature were +6.2% and +2.7°C, respectively.

406 Similar to other analyses for this region (Daloğlu, et al. 2012, Bosch et al. 2014, Verma et al

408 intensity of spring precipitation led to increased runoff and loads. Also similar to recent analysis

2015, Jarvie et al 2017) and most of the US (Sinha et al. 2017), increases in the timing and

409 for the Maumee watershed (Kalcic et al. 2019), increased temperature appears to mitigate some

410 of the spring runoff because reduced snowpack reduces the intensity of spring runoff and

411 increased evapotranspiration reduces the amount of water available to run off. Based on the

412 output from the six climate models, SWAT projected that, on average, higher precipitation alone

413 increased TP loads by 25% and DRP loads by 20%. Combining higher precipitation and

temperature increased TP loads by 9.3% and DRP loads by 7.2%.

415 **Discussion**

407

In February 2016, the US and Canada called for a 40% reduction from 2008 levels in annual TP inputs to Lake Erie's western and central basins and spring TP and DRP from the Thames River watershed. The fact that 54% of the TP load to Lake Erie originates in Lake Huron, even though 20% of the load is retained by Lake St. Clair, is a reminder that the Great Lakes are an interconnected system, and that upstream nutrient sources are important to consider.

421 The current contribution to the Detroit River load from Lake Huron appears to be more than

422 twice the load estimated from measurements, and that unmeasured contribution has been

423 increasing due to climate change. This unmeasured contribution appears to come from sediment

- 424 resuspended along Lake Huron's southeast shore, and future efforts to reduce that load will
- 425 require additional analyses of its sources, phosphorus content, event frequency, and movement

toward the outflow to the St. Clair River. It should be possible, however, to at least improve load
estimates by including continuous measurement of phosphorus surrogates, such as turbidity, that
can be correlated with phosphorus concentrations (e.g., Robertson et al. 2018).

429 Taking into consideration the potential difficulty in controlling the Lake Huron load illustrates 430 the challenge of meeting a 40% load reduction from the Detroit River, even though that load already declined by almost 22% since 2008. A modest 23% reduction of all loads would be 431 432 needed to achieve the remaining 567 MTA reduction required to meet the target; however, if reductions from Lake Huron are not included, then a 51% reduction would be required from 433 watershed sources. If further reductions from the GLWA WRRF are also not included because it 434 435 has already been reduced by over 40%, then a 72% load reduction would need to be achieved from the remaining sources - a daunting challenge. However, reducing the Lake Huron and 436 437 GLWA WRRF loads each by 10-15%, leaves 40-50% to be reduced from watershed sources, 438 which simulations show are possible.

439 Because point sources contribute 43% of the watershed's TP and 50% of the DRP (not including 440 the Lake Huron contribution), they are logical targets. The WRRF in Detroit contributes 54% of 441 the TP and DRP point source load in this watershed; however, substantial load reductions have 442 already been made from this facility, and the high costs of further technological improvement 443 may therefore be difficult to justify at this time. There are about 150 other point sources in the 444 watershed that together contribute 46% of TP and DRP point source load, so additional 445 reductions at those facilities should help. Because CSOs and urban runoff contribute little to the overall load, reductions from them would contribute little. However, to address other public 446 health and environmental concerns, CSO reduction is generally a good practice and could be 447 448 achieved through a portfolio of complementary green and gray infrastructure strategies.

449 Nonpoint sources contribute the remaining 57% and 50% of the TP and DRP loads and, similar 450 to results from Maumee River watershed assessments (Muenich et al. 2016, Kalcic et al. 2016; Scavia et al. 2017), bundling agricultural management practices appears to work better than 451 implementing single practices. Combining practices, such as cover crops, filter strips, wetlands, 452 453 and subsurface placement of fertilizer, resulted in TP reductions greater than 50%. Bundled 454 scenarios designed to address the annual TP load reductions for the Detroit River were even more effective for reducing the spring TP and DRP loads for the Thames, Sydenham, and Black 455 rivers. As in the Maumee analyses, focusing practices on land with the highest phosphorus 456 457 losses resulted in reductions that approach levels achieved from applying them on all agricultural lands. This focused approach, coupled with the relative effectiveness of different combinations 458 of practices, suggests flexibility, where practices can be combined and applied to match the 459 460 needs and preferences of producers. However, the simulations suggest that even extensive conservation on those lands may not be enough if the strategy is to get a 72% reduction from 461 those lands alone, especially because the future climate is projected to increase loads. 462 It is also important to recognize that increased air temperature favors longer periods of lake 463 stratification leading to an earlier and longer algae growing season, as well as increased organic 464 matter that promotes more hypoxic waters. For example, Rucinski et al. (2016) showed that 465 466 variation in meteorology (driving lake thermal stratification) explained almost nine times as much interannual variability in hypoxic area compared to variation in phosphorus loading, and 467 468 that deeper stratification caused by warmer, longer summers led to larger hypoxic areas. 469 Bocaniov and Scavia (2016) also showed that inter-annual differences in weather significantly 470 influenced the spatial extent, duration and severity of anoxia and hypoxia. To advance scientific 471 progress and better inform management, the interactions between climate and land management,

472 as well as between climate and the lake, must be better evaluated to assess future changes in both473 the watershed and Lake Erie.

Domestic Action Plans Adaptive Management - To understand and assess the relative sources 474 of and potential actions to reduce loads to Lake Erie from the Detroit River required assembling 475 476 large data sets from both the US and Canada; developing, calibrating, and validating diverse models at different time and space scales; and using both data and models to explore potential 477 478 management options. This effort, coupled with similar ones developed for the Huron River (e.g., 479 Xu et al. 2017), the River Raisin (e.g., Muenich et al. 2017), and the Maumee River (Muenich et al. 2016, Kalcic et al. 2016; Scavia et al. 2017), provide tools that can be used to guide policies 480 481 and practices as the countries work within the GLWQA adaptive management framework. As new information becomes available, that framework enables both adjustments to action plans and 482 improvements in models and other assessment tools. 483

Each Domestic Action Plan emphasizes that the targets and approaches are not static. For systems this complex and dynamic, it is critical to set targets, take action, monitor the results, and make adjustments as necessary. Much of what has been compiled, analyzed, and assessed herein is new since the targets were set and the action plans developed. Therefore, we anticipate our results will be helpful in evaluating both the overall load reduction targets and their allocation.

Potential plan adaptations could include 1) enhancing conservation to reach a 72% reduction
from nonpoint sources, 2) designing programs to reduce the Lake Huron and WRRF loads each
by 10-15% so that the nonpoint source load reduction is more within reach, 3) relax the
expectation of a 40% load reduction from the Detroit River and make up the difference from

other watersheds, or 4) relax the overall 40% load reduction target for the western and central
basins and accept more hypoxia. Of course, combinations of the above could also be effective.

497 Acknowledgements

We gratefully acknowledge our project sponsor the Fred A. and Barbara M. Erb Family Foundation. In addition, to providing a grant (grant# 903) that supported most of the research summarized in this report, Foundation staff, especially Melissa Damaschke, provided important guidance and insights as we were planning and executing the project. We sincerely appreciate the many contributions of our project advisory group, which generously shared their expertise and took time to review documents and attend meetings. The group helped us access additional data, improve model assumptions, and stay connected to an evolving policy context.

505 In addition to the advisory group, this project benefited from consultations with experts that 506 provided insights, advice and in many cases data. We would like the thank the following individuals: Dave Schwab and Rob Goodspeed from the University of Michigan; Margaret 507 Kalcic from Ohio State University; Robert Hirsch from USGS; Debbie Burniston, Sean Backus, 508 Luis Leon, and Reza Valipour from Environment and Climate Change Canada; Ngan Diep from 509 510 Ontario Ministry of Environment, Conservations and Parks; Mary Lynn Semegen, Bill Creal, and Catherine Willey from the Great Lakes Water Authority; Pamela Joose from Agriculture and 511 512 Agri-Food Canada; Karen Maaskant from Upper Thames River Conservation Authority; 513 Matthew Maccoux from the Milwaukee Metropolitan Sewerage District; Dong Zhang from the Ontario Ministry of Environment and Climate Change; Edward Lynch from Detroit Future 514

515 Cities; Kelly Karll from Southeast Michigan Council of Governments; and Rick Duff from the
516 Natural Resources Conservation Service.

517 **References**

- Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R.,
 others. (2012). SWAT: Model use, calibration, and validation. Transactions of the
 ASABE, 55:1491–1508.
- 521 Bertani, I. Obenour, D.R. Steger, C.E. Stow, C.A. Gronewold, A.D. Scavia, D. 2016.
- 522 Probabilistically assessing the role of nutrient loading in harmful algal bloom formation
 523 in western Lake Erie. *Journal of Great Lakes Research*. 42:1184–1192.
- Bocaniov, S.A. and Scavia, D., 2016. Temporal and spatial dynamics of large lake hypoxia:
 Integrating statistical and three-dimensional dynamic models to enhance lake
 management criteria. Water Resour. Res., 52(6): 4247-4263.
- Bocaniov, S.A., Leon, L.F., Rao, Y.R., Schwab, D.J., and Scavia, D., 2016. Simulating the effect
 of nutrient reduction on hypoxia in a large lake (Lake Erie, USA-Canada) with a threedimensional lake model. J. Great Lakes Res., 42: 1228–1240
- 530 Bocaniov and Scavia 2018. Nutrient loss rates in relation to transport time scales in a large
- shallow lake (Lake St. Clair, USA Canada): insights from a three-dimensional lake
 model. Water Resour. Res., 54: 3825-3840
- Bocaniov, S.A., P. Van Cappellen, D. Scavia. (In Review) On the role of a large shallow lake
- 534 (Lake St. Clair, USA-Canada) in modulating phosphorus loads to Lake Erie

535	Bosch, N. S.; Evans, M. A.; Scavia, D.; Allan, J. D. 2014 Interacting Effects of Climate Change
536	and Agricultural BMPs on Nutrient Runoff Entering Lake Erie. J. Great Lakes Res.
537	40:581–589.
538	Bridgeman, TB, Chaffin JD, and Filbrun JE. 2013. A novel method for tracking western Lake
539	Erie Microcystis blooms, 2002–2011. Great Lakes Res 39: 83–89.
540	Bruulsema, T. 2016. Soil phosphorus trends in the Lake Erie region. Better Crops 100:4-6
541	Burniston, D., A. Dove, S. Backus, A. Thompson. 2018. Nutrient Concentrations and Loadings
542	in the St. Clair River - Detroit River Great Lakes Interconnecting Channel. J. Great Lakes
543	Res. 44:398-411
544	Dagnew, A. D. Scavia, Y-C Wang, R. Muenich, C. Long, M. Kalcic. 2019a Modeling Flow,
545	Nutrient and Sediment Delivery from a Large International Watershed using a Field-
546	Scale SWAT model. JAWRA (in press)
547	Dagnew, A., D. Scavia, Y-C Wang, R. Muenich, M. Kalcic. 2019b Modeling phosphorus
548	reduction strategies from the international St. Clair-Detroit River system watershed. J
549	Great Lakes Res. (in press)
550	Daloğlu, I.; Cho, K. H.; Scavia, D. 2012 Evaluating Causes of Trends in Long-Term Dissolved
551	Reactive Phosphorus Loads to Lake Erie. Environ. Sci. Technol. 46: 10660–10666.
552	DePinto, J.V., Young, T.C., McIlroy, L.M., 1986. Impact of phosphorus control measures on water
553	quality of the Great Lakes. Environ. Sci. Technol. 20: 752–759
554	Derecki, J.A. and Quinn, F.H., 1990. Comparison of measured and simulated flows during the 15
555	December 1987 Detroit River flow reversal. Journal of Great Lakes Research, 16(3), pp.426-435.

556	Goodspeed, R., Van Eyl, A., Vaccaro, L. 2018. Analyzing stakeholder's perceptions of uncertainty to
557	advance collaborative sustainability science: Case study of the watershed assessment of nutrient
558	loads to the Detroit River project. Environmental Impact Assessment Review 72:145-156.
559	GLWQA (Great Lakes Water Quality Agreement). 2016. The United States and Canada adopt
560	phosphorus load reduction targets to combat Lake Erie algal blooms.
561	https://binational.net/2016/02/22/finalptargets-ciblesfinalesdep/Viewed 25 February 2016
562	Hanke, K. Impacts of Climate Change and Controlled Tile Drainage on Water Quality and
563	Quantity in Southern Ontario, Canada 109.
564	Hirsch, R.M., D.L. Moyer, S.A. Archfield. 2010. Weighted regression on time, discharge, and
565	season (WRTDS), with an application to Chesapeake Bay river inputs. JAWRA) 46: 857-
566	880
567	Hu, Y., C. Long, Y-C Wang, B. Kerkes, D. Scavia. (In Review) The Framework to Estimate
568	Total Phosphorus Loads from Urban Areas to the Huron-Erie Corridor
569	Hu, Y., D. Scavia, B Kerkez. 2018. Are all data useful? Inferring causality to predict flows
570	across sewer and drainage systems using Directed Information and Boosted
571	Regression Trees. Water Res. 145: 697-706
572	Jarvie, H. P.; Johnson, L. T.; Sharpley, A. N.; Smith, D. R.; Baker, D. B.; Bruulsema, T. W.;
573	Confesor, R. 2017 Increased Soluble Phosphorus Loads to Lake Erie: Unintended
574	Consequences of Conservation Practices? J. Environ. Qual. 46: 123–132.
575	Kalcic MM, Kirchhoff C, Bosch N, et al. 2016. Engaging Stakeholders to Define Feasible and
576	Desirable Agricultural Conservation in Western Lake Erie Watersheds. Environ. Sci.
577	Technol. 50:8135-5145

578	Kalcic, M.M., R. L. Muenich, S. Basile, A. L. Steiner, C. Kirchhoff, D. Scavia. 2019. Climate
579	change and nutrient loading: warming can counteract a wetter future. Env. Sci. Technol
580	(in press)

- Lang, G.A., J. A. Morton, T. D. Fontaine, III. 1988. Total phosphorus budget for Lake St. Clair:
 1975-80 J. Great Lakes Res. 14:257-266
- Ludsin SA, Kershner MW, Blocksom KA, *et al.* 2001. Life after death in Lake Erie: nutrient
 controls drive fish species richness, rehabilitation. Ecol Appl 11: 731–746
- 585 Maccoux, M.J., Dove, A., Backus, S.M. and Dolan, D.M., 2016. Total and soluble reactive
- phosphorus loadings to Lake Erie: A detailed accounting by year, basin, country, and
 tributary. J. Great Lakes Res. 42: 1151-1165.
- Michalak AM, Anderson EJ, Beletsky D, *et al.* 2013. Record-setting algal bloom in Lake Erie
 caused by agricultural and meteorological trends consistent with expected future
 conditions. Proceed Nat. Acad. Sci. 110: 6448–52.
- 591 Michigan Department of Environmental Quality (MDEQ), 2016. Michigan's Implementation
- 592 Plan: Western Lake Erie Basin Collaborative. Available at

593 <u>https://www.michigan.gov/documents/deq/wrd-western-lake-erie_503547_7.pdf</u>

- 594 Monteith, T. J., and Sonzogni, W. C. 1976. United States Great Lakes shoreline erosion
- 595 *loadings*. Prepared for the International Joint Commission's Pollution from Land Use
 596 Activities Reference Group, International Joint Commission. Windsor, Ontario
- 598 conservation practices on nutrient loads from the Maumee River Watershed. *Env. Sci.*

Muenich, R.L., M. Kalcic, D. Scavia. 2016. Evaluating the impact of legacy P and agricultural

- 558 conservation practices on nutrient loads from the Madinee River watershed.
- **599** *Technol. 50: 8146-8154*

600	Muenich, R.L., M.M. Kalcic, J. Winsten, K. Fisher, M. Day, G. O'Neil, YC. Wang, D. Scavia.
601	2017. Pay-For-Performance Conservation Using SWAT Highlights Need for Field-Level
602	Agricultural Conservation. Trans. ASABE. 60:1925-1937
603	Nalepa, T. F., Gardner, W.S., & Malczyk, J. M. (1991). Phosphorus cycling by mussels
604	(Unionidae: Bivalvia) in Lake St. Clair. Hydrobiologia, 219(1): 239-250.
605	Obenour, D.R., A.D. Gronewold, C.A. Stow, and Scavia, D., 2014. Using a Bayesian
606	hierarchical model with a gamma error distribution to improve Lake Erie cyanobacteria
607	bloom forecasts. Water Resources Res., 50: 7847-7860.
608	Robertson, D.M., L. E. Hubbard, D. L. Lorenz, D. J. Sullivan. 2018. A surrogate regression
609	approach for computing continuous loads for the tributary nutrient and sediment
610	monitoring program on the Great Lakes. J. Great Lakes Res. 44: 26-42
611	Rucinski, D., D. Scavia, J. DePinto, D. Beletsky 2014 Lake Erie's hypoxia response to nutrient
612	loads and meteorological variability. J. Great Lakes Res. 40:151-161
613	Rucinski, D. K.; DePinto, J. V.; Beletsky, D.; Scavia, D. Modeling Hypoxia in the Central Basin
614	of Lake Erie under Potential Phosphorus Load Reduction Scenarios. J. Gt. Lakes Res.
615	2016, 42 (6), 1206–1211.
616	Runkel, R.L, 2013: Revision to LOADEST, April 2013 http://tinyurl.com/yc5mh98a. Accessed
617	on April 12, 2018
618	Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B. Brandt, R. D.
619	Briland, I. Daloğlu, J. V. DePinto, D. M. Dolan, M. A. Evans, T. M. Farmer, D. Goto, H.
620	Han, T. O. Höök, R. Knight, S. A. Ludsin, D. Mason, A. M. Michalak, R. P. Richards, J.
621	J. Roberts, D. K. Rucinski, E. Rutherford, D. J. Schwab, T. Sesterhenn, H. Zhang, and

622	Zhou, Y., 2014. Assessing and addressing the re-eutrophication of Lake Erie: Central
623	Basin Hypoxia. J. Great Lakes Res., 40: 226–246.
624	Scavia, D., J.V. DePinto, and Bertani, I., 2016. A Multi-model approach to evaluating target
625	phosphorus loads for Lake Erie. J. Great Lakes Res., 42: 1139-1150.
626	Scavia, D., S.A. Bocaniov, A. Dagnew, C. Long, Y-C Wang. 2019a. St. Clair-Detroit River
627	system: Phosphorus mass balance and implications for Lake Erie load reduction,
628	monitoring, and climate change. J. Great Lakes Res. 45:40-49
629	Scavia, D., S. Bocaniov, A. Dagnew, Y. Hu, B. Kerkez, C. Long, R. Muenich, J. Read, L.
630	Vaccaro and Y. Wang. 2019b. Watershed Assessment of Detroit River Phosphorus Loads
631	to Lake Erie. Final project report produced by the University of Michigan Water Center.
632	Available at: <u>myumi.ch/detroit-river</u>
633	Scavia, D., M. Kalcic, R. Logsdon Muenich, N. Aloysius, I. Bertani, C. Boles, R. Confesor, J.
634	DePinto, M. Gildow, J. Martin, J. Read, T. Redder, D. Robertson, S. Sowa, Y. Wang, H
635	Yen. 2017 Multiple models guide strategies for agricultural nutrient reductions. Frontiers
636	in Ecology and the Environment. 15: 126–132
637	Scavia D., Kalcic M., Muenich R.L., Read J., et. al. (2017). Multiple models guide strategies for
638	agricultural nutrient reductions. Frontiers in Ecology and the Environment, 15(3), 126-13
639	Sinha, E.; Michalak, A. M.; Balaji, V. Eutrophication Will Increase during the 21st Century as a
640	Result of Precipitation Changes. Science 2017, 357 (6349), 405–408.
641	Stumpf, R.P. Johnson, L.T. Wynne, T.T. Baker, D.B. 2016. Forecasting annual cyanobacterial
642	bloom biomass to inform management decisions in Lake Erie. Journal of Great Lakes
643	Research. 42 (6), 1174–1183

644	Verma, S.; Bhattarai, R.; Bosch, N. S.; Cooke, R. C.; Kalita, P. K.; Markus, M. Climate Change
645	Impacts on Flow, Sediment and Nutrient Export in a Great Lakes Watershed Using
646	SWAT. CLEAN – Soil Air Water 2015, 43 (11), 1464–1474
647	Xu, X., Y-C Wang, M. Kalcic, R. L. Muenich, Y.C.E. Yang, D. Scavia. 2017. Evaluating the
648	impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental
649	Modeling and Software https://doi.org/10.1016/j.envsoft.2017.07.013
650	WEG 2018. SWAT Modelling and Assessment of Agricultural BMPs in the Upper Medway
651	Watershed, A Research Report Submitted to the Upper Thames River Conservation
652	Authority, Ontario Soil and Crop Improvement Association, and Ontario Ministry of
653	Agriculture, Food, and Rural Affairs, Watershed Evaluation Group, University of
654	Guelph, Guelph, Ontario. 126 pp
655	Zhang, T.Q., Tan, C.S., Zheng, Z.M., Welacky, T., Wang, Y.T., 2017. Drainage water
656	management combined with cover crop enhances reduction of soil phosphorus loss. Sci.
657	Total Environ. 586, 362–371.
658	Zhou Y, Michalak AM, Beletsky D, et al. 2015. Record-breaking Lake Erie hypoxia during 2012
659	drought. Environ. Sci. Technol. 49: 800-807.

Table 1. Total phosphorus load estimates (MTA) from monitored stations. Note minor 661

662

differences between this table and the one in Scavia et al. 2019a are due to updates in

original sources. 663

TP (MTA)	From Lake Huron	Ir	nto the St.	. Clair Rive	r	Into Lake St. Clair						Into the Detroit River				
Water Year		Black	Belle	Pine	Other	St. Clair River	Clinton	Sydenham	Thames	Other	Atmos + Erosion	Lake St. Clair Outlet	Rouge	GLWAP	Other	Lake Erie Inflow
1998	2261	114	35	24	59	2493	202	230	541	129	85	3062	47	727	120	2871
1999	2096	22	9	3	38	2168	144	103	218	60	72	2722	36	727	98	2522
2000	1944	38	17	9	62	2071	192	285	649	111	91	2531	56	545	110	2340
2001	2599	87	34	24	50	2548	167	155	507	126	75	2447	37	545	109	2294
2002	1959	120	35	24	57	2502	156	206	502	145	85	2590	51	636	120	2495
2003	1386	22	9	2	38	2115	90	104	247	59	92	2380	26	588	94	2369
2004	1333	137	53	39	73	1954	174	306	603	170	73	2476	47	632	118	2562
2005	1405	91	32	22	58	1785	126	218	434	106	64	2467	35	618	123	2645
2006	1331	110	37	26	61	1622	145	198	415	103	81	2388	46	634	123	2652
2007	1162	87	33	23	63	1529	146	246	463	104	68	2304	53	630	129	2659
2008	1083	82	31	21	58	1547	145	210	394	104	72	2246	51	672	128	2703
2009	1137	230	89	68	85	1767	254	312	550	161	82	2403	56	599	128	2989
2010	1076	40	19	10	37	1900	115	98	149	45	67	2272	42	600	98	2838
2011	954	143	54	40	61	1914	189	231	390	136	77	2099	68	472	122	2557
2012	980	42	17	9	43	2034	127	168	263	74	61	2054	43	368	106	2365
2013	914	160	47	34	52	1936	142	165	350	104	76	1890	39	323	96	2031
2014	890	58	22	14	49	1965	144	175	425	115	76	1911	52	313	113	1907
2015	966	46	17	9	41	2072	117	115	241	73	76	1991	39	336	92	1823
2016	1152	79	27	17	40	2307	111	89	265	78	76	2035	36	331	100	2479

664

665

DRP (MTA)	From Lake Huron	Into the St. Clair River				Into Lake St. Clair						Into the Detroit River				
Water Year		Black	Belle	Pine	Other	St. Clair River	Clinton	Sydenham	Thames	Other	Atmos + Erosion	Lake St. Clair Outlet	Rouge	GLWAP	Other	Lake Erie Inflow
1998		42	13	8	24		30	78	91	24	38		9		46	
1999		12	5	2	18		24	37	31	7	38		7		42	
2000		12	5	2	22		32	74	280	36	38		13		50	
2001		32	13	8	22		29	61	111	35	38		8		46	
2002		32	10	6	27		29	108	126	41	38		12		49	
2003		12	5	1	15		24	18	73	19	38		7		44	
2004		39	15	10	25		30	81	186	53	38		29		56	
2005		29	11	6	25		25	87	122	29	38		9	337	54	
2006		38	13	8	27		27	84	119	27	38		13	360	55	
2007		24	9	5	34		30	152	153	28	38		16	403	58	
2008	488	25	10	5	26	454	31	91	130	28	36	765	17	451	59	837
2009	529	68	26	19	41	513	50	174	221	45	41	836	18	369	61	1071
2010	535	13	6	2	16	502	29	30	48	10	34	810	17	262	47	1127
2011	497	46	17	12	26	494	42	91	154	44	38	769	28	242	58	1067
2012	485	12	5	1	24	505	37	113	114	25	30	777	18	228	53	996
2013	423	52	16	10	24	449	37	76	140	35	38	742	19	165	48	858
2014	401	19	7	4	22	455	40	74	180	46	38	780	29	157	58	832
2015	400	15	6	2	19	523	38	46	103	28	38	847	23	158	47	845
2016		30	11	6	19		38	41	121	32	38		22	178	52	

Table 2. Dissolved reactive phosphorus load estimates (MTA) from monitored stations.

667

668

670671 Figure Legends

- Figure 1. Land use in the St. Clair-Detroit River System watershed. The watershed is composed
- of about 49% cropland, 21% urban land, 13% forest, 7% grassland, 7% surface water (including
- Lake St. Clair), and 3% wetlands.

- Figure 2. The four models used in this study. Areas with diagonal lines are the study areas for
- 678 the analysis of urban sources.

680 Figure 3. SWAT model calibration locations. Areas shaded gray and labeled with bold text

represent the calibrated river watersheds. Calibration and scenario results for those watersheds

are assumed to be representative of adjacent areas (not shaded) within the bold black lines.

Figure 4. TP inputs to Lake St. Clair measured at Algonac and Port Lambton (black line), and
calculated from Lake Huron and the St. Clair River point and nonpoint source contributions
(gray line). The difference (dashed line) represents the portion of the load that is entering Lake
St. Clair but not accounted for in monitoring data.

Figure 5. A: Time series of the TP load components from the watershed (not accounting for Lake
St. Clair retention). Hatched lines represent the unmeasured load from Lake Huron. B: Percent
Lake St. Clair TP retention. C: TP loads to Lake Erie derived from the sum of the load from
Lake St. Clair and other loads to the Detroit River.

Figure 6. Contributions from non-point sources (NPS), point sources (PS), the Great Lakes
Water Authority WRRF, and Lake Huron to the Detroit River TP load to Lake Erie at several
time periods, accounting for Lake St. Clair retention. The target represents a 40% reduction from

697 the 2008 load.

698

699Figure 7. Proportions of the Detroit River's TP load to Lake Erie from all sources. The Great

- 700 Lakes Water Authority Water Resources Recovery Facility (GLWA WRRF) in Detroit is shown
- separately from the Rouge watershed in this case.

Figure 8. Proportions of the watershed TP (left) and DRP (right) loads from US and Canadian

Figure 9. Proportions of the watershed TP (left) and DRP (right) loads from US and Canadian
non-point sources (NPS) coming from agricultural land (i.e., cropland and pastureland), urban
land, and other land (i.e., forests and wetlands) derived from SWAT. The load from Lake Huron
is not included here

Figure 10. Modeled TP and DRP loss yields (kg/ha) for each SWAT model unit (HRU). Data

- from urban areas (shown in white) are not included so comparisons can be made across
- 713 agricultural lands only.

715

Figure 11. Percent reductions of TP and DRP for bundled scenarios. Each bundle assumes 100%
implementation, except the "targeted" scenario, which places practices on the 55% of land with
the highest DRP and TP yields. For bundles that altered fertilizer rates, we assumed a 25%
reduction in fertilizer application rates.

- Figure 12. Percent spring (March-July) TP (black) and DRP (gray) load reductions for three
- bundled scenarios. Each bundle assumes 100% implementation.