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Research Impact Statement: A well-calibrated and validated flow and water quality model was 15 
used to assess nutrient load, concentration, yield, and distribution for a large international 16 
watershed. 17 

Abstract: A large international watershed, the St. Clair-Detroit River System (SCDRS), 18 
containing both extensive urban and agricultural areas, was modeled using the Soil and Water 19 
Assessment Tool (SWAT) model. The watershed, located in southeastern Michigan, US, and 20 
southwestern Ontario, Canada, encompasses the St. Clair, Clinton, Detroit, Sydenham, Upper, 21 
and Lower Thames sub-watersheds. The SWAT input data and model resolution (i.e., 22 
Hydrologic Response Units, HRUs), were established to mimic farm boundaries, the first time 23 
this has been done for a watershed of this size. The model was calibrated (2007-2015) and 24 
validated (2001-2006) with a mix of manual and automatic methods at six locations for flow and 25 
water quality at various time scales.  The model was evaluated using Nash-Sutcliffe efficiency 26 
(NSe) and percent bias (PBs) and was used to explore major water quality issues. We showed the 27 
importance of allowing key parameters to vary among sub-watersheds to improve goodness of 28 
fit, and that the resulting parameters were consistent with sub-watershed characteristics. 29 
Agricultural sources in the Thames and Sydenham sub-watersheds and point sources from 30 
Detroit sub-watershed were major contributors of phosphorus. Spatial distribution of phosphorus 31 
yields at HRU and subbasin levels identified locations for potential management targeting for 32 
both point and non-point sources and revealed that in some sub-watersheds non-point sources are 33 
dominated by urban sources.  34 

 35 
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 37 

INTRODUCTION 38 

Watersheds are widely accepted units of analysis for water resources planning and 39 

management (McKinney et al., 1999; IJC, 2009; Sheelanere et al., 2013), and have been the 40 
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focus for guiding water resource and management decisions for decades. However, their natural 1 

and anthropogenic processes and activities are often too complex and variable, both spatially and 2 

temporally, to be captured thoroughly through monitoring alone (Mirchi et al., 2009). Therefore, 3 

watershed modeling tools, especially flow and water quality models, have been used increasingly 4 

to simulate watershed processes and human use to help guide those decisions at local, national 5 

and international scales (Daniel et al., 2011; Singh and Frevert, 2010; Madani and Marino, 6 

2009). These modeling tools are particularly valuable for developing a common understanding 7 

and framework for setting goals among nations with shared watersheds (IJC, 2009). 8 

One of the most widely used watershed models is the Soil and Water Assessment Tool 9 

(SWAT) (Arnold et al., 1998), a semi-distributed, physically based flow and water quality model 10 

that has been used in watersheds around the world with widely varying characteristics in size and 11 

composition (Gassman et al., 2007; 2014).  It is designed to capture information ranging from 12 

very coarse to fine spatial scales by dividing the watershed into subbasins based on topography, 13 

and then dividing the subbasins into smaller Hydrologic Response Units (HRUs) based on 14 

unique land use, soil type, slope, and/or management combinations. While these HRUs can be at 15 

very fine scales, this increased resolution and complexity improves results only when there is an 16 

equivalent level of input information (Johnston and Smakhtin, 2014; Jakeman et al., 2006).  17 

Fortunately, in recent years, extensive data sets, such as land-use data generated from remote 18 

sensing and tile drainage systems characteristics collected by government and non-government 19 

organizations, enable relatively detailed watershed models.   20 

However, even with detailed input data, SWAT still has a large number of parameters 21 

that cannot be measured directly and therefore need to be estimated through model calibration 22 

(Lie et al., 2010).  The most frequently used calibration practice is to evaluate simulation 23 

performance at a single downstream location (Shi et al., 2013), which ignores spatial 24 

heterogeneity.  This is particularly problematic for large systems where parameters estimated for 25 

some parts of the watershed may be unrealistic for other parts. For example, Leta et al. (2017) 26 

assessed the impact of calibrating at a single site, at multiple sites with constant parameter 27 

values, and at multiple sites with varying parameter values for a 1,162 km2 watershed in 28 

Belgium. Their results indicated that using different parameter values among different regions 29 

improved calibration results. In their study for a 239 km2 watershed in Idaho, Zhang et al. (2008) 30 
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also showed the importance of calibrating at multiple monitoring sites for better representations 1 

of regional conditions and goodness-of-fit. Hence, for large and/or spatially heterogeneous 2 

watersheds, calibration/validation processes at multiple locations is crucial to ensure accurate 3 

representations of local and regional flow, sediment, and nutrient simulations (Bai et al., 2017; 4 

Leta et al., 2017; Wang et al., 2012; Zhang et al., 2008).  5 

A water quality agreement between the United States and Canada (GLWQA, 2016), 6 

crafted in response to Lake Erie’s re-eutrophication (Scavia et al., 2014), has led to new 7 

phosphorous loading targets.  Attention has logically been placed on loads from the Detroit and 8 

the Maumee rivers because they contribute about 90% of total phosphorus (TP) load to the 9 

western basin of the lake (Scavia et al., 2016). While there have been several assessments for the 10 

Maumee watershed (e.g., Scavia et al., 2017;  Muenich et al., 2016; Kalcic et al., 2016), there has 11 

been no similar assessment for the nearly 20,000 km2 international watershed that drains into 12 

Lake Erie from the Detroit River. This study was designed to begin filling that gap with a robust 13 

watershed model to allow assessing potential nutrient load reduction strategies. 14 

The goal of this study is to calibrate the SWAT model for this very large, complex 15 

international watershed at multiple locations and investigate the spatial distribution of nutrient 16 

sources and loads.  In pursuit of this goal we first assembled and harmonized into seamless 17 

model input US and Canadian data that have their own characteristics, developed with different 18 

methodologies and interpretations, and with their own formatting and naming conventions (IJC, 19 

2015).    20 

STUDY AREA 21 

The St. Clair-Detroit River system (SCDRS) drains a 19,040 km2 watershed area from 22 

parts of southeastern Michigan in the US (40% of watershed area) and southwestern Ontario in 23 

Canada (60% of watershed area) and contributes its load to Lake Erie through the Detroit River 24 

(Figure 1).  It is composed of about 50% cropland, 20% urban area, 12% forest, 8% grassland, 25 

and 7% water bodies. The US portion of the watershed is dominated by the Detroit Metropolitan 26 

area, whereas the Canadian portion is dominated by tile-drained croplands growing corn, 27 

soybeans, and winter wheat. Over the 15 years study period (2001-2015), total annual 28 

precipitation and annual average temperatures vary between 740 and 1200 mm, and 7.5 and 29 
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11.0oC, respectively, averaging at 908 mm and 9.3oC.  Elevation ranges from 422 m above sea 1 

level at the watershed boundary to 145m at the outlet, with mostly flat slopes. 2 

 3 

 4 
Figure 1: Study area with geographic location and weather stations (top-left), land use/land cover 5 
and sub-watershed boundaries (bottom-left), soil and county boundaries (bottom-right) and DEM 6 
and calibration locations (top-right) information. The channel which connects Lake Huron to 7 
Lake St. Clair is St. Clair River, and Lake St. Clair to Lake Erie is Detroit River. Water flows 8 
from Lake Huron to Lake Erie through Lake St. Clair. 9 

 10 

The US portion drains three HUC8 watersheds (St. Clair [SC], Clinton [CL], and Detroit 11 

[DT] sub-watersheds) drained primarily by the Black River (BR), Clinton River (CR), and 12 

Rouge River (RR), respectively. The Canadian portion drains three tertiary watersheds (Upper 13 

Thames [UT], and Lower Thames [LT] and Sydenham [SY] sub-watersheds) through the 14 

Thames River (TR) and Sydenham River (SR). For this study, the TR includes both Upper 15 
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(UTR) and Lower Thames River (LTR) segments. The watershed includes two smaller sub-1 

watersheds, Essex in Canada and Lake St. Clair in the US. While calibration and validation were 2 

performed at the outlet of the six major rivers (BR, CR, RR, SR, UTR and LTR), most load 3 

assessments were made for the entirety of each sub-watershed (SC, CL, DT, SY, UT and LT) 4 

that the major rivers drain. Hence, it is important to note the difference in names between the 5 

sub-watershed and river, especially for the Detroit and St. Clair sub-watersheds that are drained 6 

through the Rouge and Black rivers.  7 

Overall, 79% of the watershed’s agricultural land is in Canada and 83% of the urban land 8 

is in the US. The CL and DT sub-watersheds are heavily urbanized (about 56% and 89% of each 9 

as urban, respectively), and the SC, SY, UT, and LT sub-watersheds are dominated by 10 

agriculture (63%, 89%, and 87% agricultural, respectively). This spatial variation in land 11 

use/land cover (LULC) provides both challenges and opportunities for investigating model 12 

performance.  Moreover, five of the six HUC8 (tertiary) sub-watersheds drain into the 1100 km2 13 

Lake St. Clair (Figure 1) that retained an average 13% of its TP input over the 1998-2016, and 14 

21% over the 2013-2015 time period (Bocaniov and Scavia, 2018; Scavia et al., 2019). 15 

DATA 16 

Basic inputs 17 

With the exception of data on elevation and weather, all model input was obtained 18 

separately for the US and Canada and then merged.  DEM data with 30m x 30m resolution from 19 

the US Geological Survey–The National Map (USGS, 2016) were used for the entire watershed 20 

for elevation, slope, and subbasin delineation. Daily precipitation and maximum and minimum 21 

temperatures were obtained from the National Oceanic and Atmospheric Administration’s 22 

Global Historical Climatology Network (NOAA-GHCN, 2016) for 16 US stations and 15 23 

Canadian stations for 1999-2015 (Figure 1).  LULC layers for 2011-2015 with 30m x 30m grid 24 

cells were from the US Department of Agriculture National Agricultural Statistics Service 25 

(USDA-NASS, 2016) Cropland Data Layer and the Agriculture and Agri-Food Canada Annual 26 

Crop Inventory (AAFC, 2016). The 2015 LULC data layer was used to setup the SWAT model 27 

and the 5-year data set was used to generate crop rotations. Soil data layers were from the USDA 28 

Natural Resources Conservation Service Soil Survey Geographic Database (SSURGO) (USDA-29 
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NRCS, 2017) and from the AAFC’s Soil Landscapes of Canada (version 3.2) (AAFC, 2016). 1 

Road network data was from U.S. Census Burau (U.S. Census Bureau, 2016. TIGER/Line. 2 

Accessed November 2016, https://www.census.gov/cgi-3 

bin/geo/shapefiles/index.php?year=2015&layergroup=Roads) and Ontario Road Network 4 

(Ontario Road Network, 2016. ORN. Accessed November 2016, 5 

https://www.ontario.ca/data/ontario-road-network-road-net-element). 6 

Flow and water quality 7 

The USGS National Water Information System (USGS-NWIS, 2016) and the Canadian 8 

National Water Data Archive hydrometric data (HYDAT, 2016) were used to obtain daily flow 9 

data for the most downstream gauging stations in each sub-watershed (Figure 1, Table S2). Any 10 

data gap of 60 days or more was filled using either the stage discharge relationship, if stage data 11 

were available, or with the unit area method using data from a nearby station along the same or 12 

adjacent stream. If a gap was less than 60 days, it was filled using structural time series (Ryberg 13 

and Vecchia, 2017).  14 

Total suspended sediment (TSS), total nitrogen (TN), nitrate (NO3), total phosphorus (TP) 15 

and dissolved reactive phosphorus (DRP) concentration data for the US were obtained from the 16 

Water Quality Portal (WQP, 2016). Canadian data were from the Provincial Stream Water 17 

Quality Monitoring Network (PWQMN, 2016) and Environment and Climate Change Canada 18 

(ECCC, D. Burniston and A. Dove, personal communication, 2017).  Average sampling 19 

frequency ranged from 3 to 17 samples per year for the US and 7 to 21 for Canada. 20 

Because flow and water quality data were often measured at different locations (Figure 1), 21 

calibration points were generally at the most downstream water quality stations to avoid 22 

extensive interpolation of water quality concentrations and to account for most of the sub-23 

watershed areas. Daily flow data at the calibration locations were estimated using the drainage-24 

area method (Hirsch, 1979) from the upstream flow stations. Monthly and annual nutrient load 25 

estimates for calibration at these locations were made using the weighted regression on time, 26 

discharge and season (WRTDS) method (Hirsch et al., 2010) based on sample concentration 27 

values and daily flow.  28 

https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2015&layergroup=Roads
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2015&layergroup=Roads
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Management data layers 1 

Management data layers include cropping systems, fertilizer and manure application rates 2 

and placement, tillage practices, and tile drainage. County level fertilizer sales data were from 3 

the International Plant Nutrition Institute (IPNI, 2016) for the US and provincial level fertilizer 4 

sale data were from Statistics Canada (STATCAN, 2016). Unique application rates for individual 5 

crops were based on regional N and P fertilizer application rate information from USDA 6 

Economic Research Service (USDA-ERS, 2016) and Canadian Field Print Initiative (Canadian 7 

Field Print Initiative, 2017. Accessed March 2017, http://fieldprint.ca/fertilizer-use-survey/). 8 

Manure amounts were based on livestock (dairy, beef, swine, sheep, goat, chicken and turkey) 9 

counts in each county from USDA-NASS (USDA-NASS, 2016) and from the Ontario Ministry 10 

of Agriculture, Food and Rural Affairs (OMAFRA, 2016).  Spatial distribution of manure 11 

application in Canada was provided by OMAFRA (K. McKague, personal communication, 12 

2017) as locations (points) of animal farms and field areas that receive manure from each animal 13 

farm without explicit indication of which field (s).   14 

Tillage practices for sub-watersheds in the US and county/sub-county level for Canada 15 

were obtained from USGS and STATCAN, respectively. The latest US tillage data were from 16 

2004, but it detailed practices for each crop type. Canadian data were from 2011, but they did not 17 

distinguish among crop types. Data on the distribution of subsurface (tile) drainage systems in 18 

Canada were from OMAFRA (2016). Tile drainage information is not available for the US, so 19 

we assumed all cropland with poorly drained soils employed tiles (Kalcic et al., 2015). Tile 20 

drainage installation depth and spacing specification for the Canadian side of the watershed were 21 

recommended to vary by soil type (K. McKague, personal communication, 2017). As such, tile 22 

depths were set at 650 mm, 750 mm and 950 mm for clayey, silty, and sandy soils, respectively, 23 

with corresponding spacing at 8 m, 12 m, and 15 m, respectively. For the US side, a uniform 24 

1000 mm depth and 20m spacing were used. 25 

Three reservoirs in the upper Thames region (Fanshawe, Wildwood, and Pittock) with 26 

surface-area (ha)/volume (ha-m) controls of 262/1235, 192/796, and 142/266, respectively, were 27 

included in the model. Information about the physical features of the reservoirs, daily outflow 28 

data, and water quality samples were obtained from the Upper Thames River Conservation 29 

Authority website (UTCA, 2017) and M. Helsten (personal communication, 2017). Monthly 30 

http://fieldprint.ca/fertilizer-use-survey/
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industrial and municipal point source (Figure 2) data were collected from EPA Enforcement and 1 

Compliance History (U.S. Environmental Protection Agency, 2017. ECHO. Accessed May 2017, 2 

http://tinyurl.com/ybgda4u3) and the Great Lakes Water Authority – Water Resources Recovery 3 

Facility (GLWA-WRRF) (M. Khan, C. Willey, personal communication, 2018) for the US, and 4 

from OMECC’s (Ontario Ministry of Environment and Climate Change) Effluent Monitoring 5 

and Effluent Limits (EMEL) Regulations (http://tinyurl.com/y7j9fqhq) for Canada. 6 

 7 
Figure 2: Subbasins and hydrologic response units (HRUs) along with point source locations in 8 
the watershed 9 

 10 

METHODOLOGY 11 

Data Assimilation 12 

Because this was a binational watershed study, it was essential to ensure data from the two 13 

countries were harmonized. The US and Canadian LULC data have the same resolution but 14 

http://tinyurl.com/ybgda4u3
http://tinyurl.com/y7j9fqhq
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different land use type names and identification codes. Because SWAT is based on US data 1 

types, Canadian LULC type names and identification codes were converted to the US format 2 

(Figure 1). Canadian soil data required additional calculations and unit conversions to conform to 3 

US-based SWAT parameters (Table 1). Though there is some anecdotal evidence that Canadian 4 

manure production per animal may be different from the US, we used US values for both.  5 

Table 1: Relationship between Canadian versus SWAT major soil parameter names and units, 6 
and the changes made  7 

SWAT Soil Canadian Soil Comment
s Equations Parameter Unit Parameter Unit 

SOL_ZM
X mm max(LDEPT

H) cm converted Unit conversions 
SOL_Z mm LDEPTH cm converted 

SOL_AW
C 

mmH2O/
mm soil X X Calculate

d 
SOL_AWC = KP1500-

KP33 
SOL_K mm/hr KSAT cm/hr Converted 

Unit conversions ROCK % total 
weight COFRAG 

% by 
volum

e 
converted 

SOL_ALB fraction X X Calculate
d 

SOL_ALB = 
0.4/(0.688*SOL_CBN) 

USLE_K 
0.013 

(t.m2.hr)/ 
(m3.t.cm) 

X X Calculate
d 

Equation from SWAT 
I/O documentation 
(Arnold et al. 2012 

Page 307) 
Notes: X = parameter not available, SOL_ZMX=max(LDEPTH)= maximum rooting depth of soil, 8 
SOL_Z=LDEPTH=depth from soil surface, SOL_AWC=available water capacity of soil, 9 
SOL_K=KSAT=saturated hydraulic conductivity, ROCK=COFRAG=rock fragment content, 10 
SOL_ALB=moist soil albedo,  USLE_K=soil equation erodibility factor, SOL_CBN=organic carbon 11 
content of soil, KP1500=water retention at 1500 kP, KP33= water retention at 33 kP 12 

Model setup 13 

Using an area threshold based on the DEM and identification of additional outlet locations 14 

to accommodate future comparison and/or spatial verification from smaller sub-watersheds 15 

models and/or evolving monitoring efforts, the watershed was divided into 800 subbasins (Figure 16 

2) with an average area of 24 km2. Smaller subbasins were created in predominantly urban areas 17 

to capture their higher variation in drainage and land use types, and to potentially test urban 18 

management scenarios in future work at finer spatial scales. Each subbasin was further divided 19 

into HRUs using predefined field boundaries as discussed below. The ArcGIS interface, 20 
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ArcSWAT, version 2012.10_3.18 was used for setup and SWAT2012 rev635, as modified by 1 

Kalcic et al. (2016), was used for simulations. 2 

Field boundaries and data processing 3 

LULC, road network, and subbasins were used to define field boundaries using a 4 

combination of the methods described by Kalcic et al. (2015) and Teshager et al. (2016). 5 

Following Teshager et al. (2016), LULC and road network data were used as the primary sources 6 

to identify field boundaries. As such, the watershed was divided into 27,751 “fields” with an 7 

average area of about 69 ha, of which 15,219 (54.8%) are cropland. These fields were assigned 8 

unique soil type identifiers (Kalcic et al., 2015), and an ArcGIS shapefile that contains the soil 9 

identifiers and LULC for each field was created. The shapefile was then used to define HRUs in 10 

the ArcSWAT model setup with 0% thresholds for LULC, soil, and slope, and the 27,751 fields 11 

thus became the SWAT HRUs (Figure 2). 12 

A key advantage of using field boundaries to generate HRUs is that management practices 13 

can be assigned at a more detailed spatial scale than in more traditional SWAT models. Crop 14 

rotations for each HRU were estimated by overlaying the 2011-2015 LULC data layers and 15 

extracting the major cropping systems in each cropland fields. The most dominant crop rotations 16 

involved corn, soybeans, and winter wheat. In order to maintain a manageable number of 17 

rotations, crop rotations were limited to a maximum of three years. Tile drainage data and field 18 

boundaries were overlaid to determine fields with tile drainage systems. If the majority of a field 19 

was covered by the tile drainage layer, the field was considered to have tiles. Canadian fields 20 

(HRUs) that receive manure were determined based on proximity to animal farm location and 21 

total field area receiving manure from the animal farm.  22 

The field boundaries were also used to distribute the county level conventional (Cv), 23 

conservation (Cs), and no-till (NT) tillage practices. The type of tillage practices assigned for a 24 

crop field in a county depended on the proportions of practices (Cv:Cs:NT) in that county and 25 

the cropping system (crop rotation) in the field. Conventional tillage practices were assigned 26 

more in fields with intensive corn, single crop, or non-alternate rotations (e.g., continuous corn). 27 

On the other hand, more conservative tillage practices (Cs and NT) were assigned more in fields 28 

with alternate rotations (e.g., corn-Soybeans-Winter wheat). Given this information on field-29 

scale crop rotations and regional application rates of mineral N and P for different crops, a 30 
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similar approach was used to allocate county/provincial level fertilizer applications across 1 

agricultural HRUs. Corn fields generally received N and P fertilizer at higher application rates 2 

than winter wheat or soybeans. Corn in continuous-corn rotation received more mineral fertilizer 3 

than corn in any other alternate rotations (Table S1). 4 

The field boundaries were also designed for analysis and display of input and output information 5 

(e.g., distribution of fertilizer/manure application, flow, phosphorus load, etc.), and to model 6 

infield best management practices (BMPs) (e.g., filter strips, grassed waterways, drainage 7 

management, etc.) at finer scales.   8 

Calibration and validation 9 

Calibration and validation were performed at the outlets of the three US sub-watersheds 10 

and the three Canadian sub-watersheds (Figure 1). The model simulated 1999-2015, using the 11 

first two years as the warm-up period. Flow was calibrated for 2007-2015 and validated for 12 

2001-2006 at daily, monthly, and annual time scales. Upon successful flow calibration, the 13 

model was calibrated for total suspended sediment loads, followed by nutrients (TN, NO3, TP, 14 

and DRP) at daily time steps. Since monthly and annual scales were more relevant for 15 

management application and policy advice, water quality parameters were further adjusted to 16 

also match WRTDS’s monthly and annual water quality loads.   17 

The significant variation in LULC and land management across such large watershed was 18 

expected to result in different controlling dynamics, especially physical drivers.  Therefore, 19 

during calibration, certain subbasin and HRU parameters were allowed to vary across the six 20 

major sub-watersheds (Table S3, S4).We used both manual calibration and SWATCUP’s SUFI2 21 

(Abbaspour, 2015) auto-calibration procedures. Watershed level parameters were initially 22 

adjusted manually based on experience and information about local conditions. For example, 23 

parameters that control snow cover were estimated based on comparisons of observed and 24 

simulated snowfall frequency and snow depth values for the area. Then, SUFI2 was used to 25 

estimate HRU and subbasin parameter values and to understand their general direction of change 26 

in each major sub-watershed. Finally, manual calibration was used for all parameters to improve 27 

fit.  28 
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Model performance was evaluated by comparing observed and simulated values using 1 

three commonly used statistics for watershed modeling: coefficient of determination (R2), Nash-2 

Sutcliffe efficiency coefficient (NSe), and percent bias (PBs).   3 

The NSe is used to assess how good simulated values fit observations. The NSe values 4 

range from 1 to -∞ with 1 being a perfect 1:1 fit between simulated and observed values. PBs 5 

provides insights on the tendency of simulations in under- or over-estimating values, and ranges 6 

from -∞ to +∞. A PBs value of 0.0% indicates a perfect match between average simulated and 7 

observed values, and negative and positive values show under- and over-estimation, respectively. 8 

The R2 values examine how well simulated values are correlated with observations, i.e., follow 9 

similar trends; 0.0 indicates no correlation and 1.0 a perfect correlation. According to Moriasi et 10 

al. (2007), monthly simulations with NSe > 0.75 are considered “very good”, > 0.65 and ≤ 0.75 11 

are “good”, > 0.50 and ≤ 0.65 are “satisfactory”, and values ≤ 0.50 are “unsatisfactory” for 12 

watershed models. Similarly, values of |PBs| < 10%, 10% - 15%, 15% - 25%, and ≥ 25% fall into 13 

those same categories for flow simulations. The same categories apply for sediment if |PBs| < 14 

15%, 15% - 30%, 30% - 55%, and ≥ 55% and for nutrients |PBs| < 25%, 25% - 40%, 40% - 70%, 15 

and ≥ 70%.  16 

Finally, to evaluate the significance of allowing parameters to vary among sub-17 

watersheds, the final calibrated flow parameter set for each sub-watershed was assigned 18 

uniformly across the entire watershed and NSe and PBs were compared to those for the varying 19 

parameter case. As a result, six sets of statistics for each sub-watershed were compared.  20 

RESULTS AND DISCUSSION 21 

Input Characterization 22 

Using the spatial allocation scheme (HRU boundaries), we distributed crop rotations, 23 

fertilizer/manure applications, tile drainage, and tillage practices for each HRU explicitly (Figure 24 

3) to better represent actual conditions. With respect to cropping systems, three-year rotations 25 

involving corn (C), soybeans (S), and winter wheat (W) covered about 43% of the cropland area. 26 

Distribution of crop rotation types was similar within each country, with CSW dominating, 27 

followed by CS and then SS (Table 2). However, corn-only or soybeans-only cropping systems 28 
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were more abundant in Canada than the US (Figure 3), and 40% of the Canadian soybean 1 

intensive fields were in the Essex region. Crop rotations for each county and HUC8/tertiary sub-2 

watershed are detailed in Figure S1 and S2.  3 

 4 

Table 2: Percentages of cropland area covered with the different types of crop rotations divided 5 
between US and Canada (C=corn, S=soybeans, W=winter wheat) 6 

Crop 
rotation 

% cropland area 
Canada US Overall 

CC 8.4 1.6 7.1 
CS* 25.4 35.5 27.3 
SS 13.5 13.1 13.4 
CSW** 42.8 45.4 43.3 
SW 0.4 0.3 0.4 
SSW 9.5 4.1 8.5 
Total 100.0 100.0 100.0 

*Includes both CS and SC rotations 7 
**Includes CSW or SWC or WCS rotations 8 
 9 
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 1 
Figure 3: HRU-level agricultural management practice model inputs (C=Corn, S=Soybeans, 2 
W=Winter wheat, Cv=Conventional tillage, Cs=Conservation tillage, NT=No-till) 3 

 4 

Allocation of conventional (Cv), conservation (Cs), and no-till (NT) tillage practices 5 

(Figure 3) resulted in about 70% of cropland receiving alternating practices with either two or 6 

three tillage types (Figure 4). The most dominant tillage practice was Cs-NT (39.4%) and was 7 

mainly in Canada. US croplands were dominated by Cv-Cs tillage. While cropping systems that 8 

alternate corn-soybeans-winter wheat in a three-year rotation received all three tillage practices, 9 

most of the continuous conventional tillage practices were assigned for single crop rotations 10 

(Figure 5).  11 

 12 
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 1 

Figure 4: Estimated distribution of tillage practices in US and Canadian parts of the SCDRS 2 
watershed (Cont. Cv=Continuous conventional, Cont. Cs=Continuous conservation, Cont. NT= 3 
Continuous No-Till, Alter. = Alternating) 4 

 5 

Figure 5: Estimated relationship between tillage practices and crop rotations (C=Corn, 6 
S=Soybeans, W=Winter wheat, Cont. Cv=Continuous conventional, Cont. Cs=Continuous 7 
conservation, Cont. NT= Continuous No-Till, Alter. = Alternating) 8 

 9 
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Tile drainage was denser in Essex region, lower parts of SY and LT, and upper parts of 1 

SC and UT sub-watersheds (Figure 3). About 67% of Canadian and 55% of US agricultural areas 2 

were considered tiled (Table 3). Most of the UT and upper parts of SY agricultural fields receive 3 

manure generated in their respective counties while few fields in LT and Essex area received 4 

manure. In the US, manure was assumed to be distributed across all agricultural fields, and 5 

because of this and fewer livestock, solid manure application rates in the US were lower (85-670 6 

kg/ha for dairy, 8-50 kg/ha for Beef and 1-35 kg/ha for swine) than in Canada (345-1082 kg/ha 7 

for dairy, 261-695 kg/ha for Beef and 667-1556 kg/ha for swine). 8 

 9 

Table 3: Percentages of agricultural area with tile drainage systems divided between US and 10 
Canada at sub-watershed level  11 

HUC8/Tertiary name Tiled area 
% total area % agricultural area 

St. Clair (SC) 37 59 
Clinton (CL) 8 46 
Detroit (DR) 1 16 

Lake St. Clair 5 29 
U.S. total 18 55 

Upper Thames (UT) 54 62 
Lower Thames (LT) 49 55 

Thames total 51 59 
Sydenham (SY) 69 77 

Essex 58 72 
Canada total 58 67 

Watershed total 42 64 
 12 

Calibration and Validation 13 

Flow. The model reproduced observed flow hydrographs fairly well (Figure 6). Using Moriasi et 14 

al. (2007) performance criteria, the monthly flow calibration NSe (Table 4) were judged “very 15 

good” for the ULT, LTR, and SR sub-watersheds; “good” for BR and RR; and “satisfactory” for 16 

CR. PBs during calibration and both NSe and PBs during validation for all six locations were 17 

rated as “very good”. The model also performed well at daily (NSe > 0.5 except BR, and 18 

|PBs|<10%) and annual (NSe >0.65 and |PBs| < 10%) time scales (Table S5).  19 

 20 
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Table 4: Monthly flow estimation performance statistics for calibration (2007-2015) and 1 
validation (2001-2006) years (R2 = coefficient of determination, NSe = Nash-Sutcliffe 2 
efficiency, PBs = percent bias) 3 

Statistics 

Monthly statistics for flow calibration(validation) period 
Upper 

Thames 
River 
(UTR) 

Black 
River  
(BR) 

Sydenham 
River  
(SR) 

Clinton 
River 
(CR) 

Lower 
Thames 
River 
(LTR) 

Rouge 
Rover 
(RR) 

R2 0.84(0.93) 0.72(0.76) 0.85(0.87) 0.63(0.80) 0.87(0.92) 0.71(0.78) 
NSe 0.84(0.93) 0.72(0.76) 0.85(0.86) 0.53(0.75) 0.87(0.91) 0.70(0.75) 
PBs 0.1(3.2) 9.2(-2.9) -1.2(8.4) -2.7(1.9) -2.7(5.4) -1.1(-8.5) 

 4 

 5 
Figure 6: Monthly observed and estimated flow time series at each major sub-watershed outlet 6 
locations for both calibration (2007-2015) and validation years (2001-2006) 7 

 8 

As expected, allowing parameters to vary among sub-watersheds provided a better 9 

representation of regional conditions and improved model performance (Tables S2 and S3).  10 

During calibration, some flow parameter values varied substantially across the watershed, 11 
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especially between agricultural- and urban-dominated sub-watersheds (Tables S4). Flow was 1 

particularly affected by changes in parameters for main channel average width (CH_W2) and/or 2 

depth (CH_D) and average slope (CH_S2) in both of the highly urbanized streams (CR and RR). 3 

This adjustment for urban streams is consistent with the fact that urbanization not only increases 4 

runoff but also alters routing of flow downstream through changes in channel dimensions 5 

(Booth, 1990; Baker et al., 2008).  6 

The calibration also resulted in substantially lower soil water capacity parameter values 7 

(SOL_AWC) in urbanized areas, consistent with the fact that urbanization reduces soil 8 

permeability, infiltration, and water holding capacity through soil disturbance, displacement, 9 

pore space reduction, low organic matter, and high surface traffic (Craul, 1985; Jim, 1998; Yang 10 

and Zhang, 2015; Wiesner et al. 2016). For example, the European Commission Bio Intelligence 11 

Serve (2014) reported that changing forest land to urban land could decrease the maximum soil 12 

water content by up to 25%.  13 

Differences in other parameter values, such as increasing the runoff curve number from 14 

the SWAT default value for moisture condition II (CNII) for the UT by 10% and the LT by 4% 15 

reflected the differences in slopes between the two regions (~0.12% and ~0.03%, respectively, 16 

along the main stream course). These two regions also have different soil drainage class 17 

distributions. While the UT has more well drained soils, the LT is dominated by poorly drained 18 

soils. As such, SOL_AWC was increased by 10% above the default value and the soil 19 

evaporation compensation factor (ESCO) was set at 0.90 for the LT, compared to an ESCO value 20 

of 0.30, and the default value for SOL_AWC for the UT. The increase in SOL_AWC for the LT 21 

reflected the higher water holding capacity of the poorly drained soils. Moreover, the higher 22 

ESCO value for the UT was consistent with its higher water holding capacity of the soil that 23 

compensated for evaporation. 24 

Overall, comparison of the final flow calibration statistics (Table 4) against statistics 25 

from uniform parameters across the entire watershed (Table S6) showed the strength of varying 26 

parameter values. If, for example, parameters which were best for UTR flow conditions were 27 

used across the watershed, the NSe values for CR, BR and RR would have dropped by 62%, 28 

11% and 6%, respectively, and the |PBs| values for CR, BR and SR would have increased by 29 

34.3%, 29.2%, and 12.7%, respectively. Similarly, if best parameter sets for CR flow conditions 30 
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were used across the watershed, |PBs| values would have increased by 25.4%, 19.6%, 13.6%, 1 

12.5%, and 11.9%, for RR, BR, LTR, UTR and SR, respectively, and the NSe values for RR and 2 

BR would have dropped by 34% and 14%.  3 

A closer look at the effects of parameter values from one sub-watershed applied to 4 

another indicated that even exchanging parameter sets between urbanized sub-watershed (CR, 5 

RR) reduced fit.  For example, using the CR optimal parameter values for the RR reduced its 6 

NSe and increased its PBs values by 34.3% and 25.4%, respectively. The RR parameter values 7 

had similar effects for the CR. Interestingly, while parameter values from the agricultural sub-8 

watershed (SY) reduced fit for the urbanized river (CR), the urbanized sub-watershed (CL) 9 

parameters had less impact on the agricultural one (SR).  10 

Water quality. Measured nutrients and sediment dynamics were also replicated sufficiently 11 

(Figure 7, Table 5, Figure S4-S7). Monthly water quality calibration and validation statistics 12 

were better for TP than DRP and better for TN than NO3. All calibrations and validations were 13 

rated as “good” or better for PBs. Most calibration and validation NSe values were rated as 14 

“good” or “satisfactory”. However, the phosphorus-related NSe values for UTR calibration were 15 

unsatisfactory, as was the RR validation, and both calibration and validation for the BR.  Similar 16 

to flow, ratings for the major rivers in agricultural sub-watersheds (SR, LTR and UTR) were 17 

better than river in urbanized sub-watersheds (CR and RR). 18 

 19 
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 1 
Figure 7: Monthly observed and estimated total phosphorus (TP) time series at the six major sub-2 
watershed outlet locations for both calibration (2007-2015) and validation (2001-2006) periods 3 

 4 
 5 
Table 5:  Monthly water quality model performance statistics for calibration (2007-2015) and 6 
validation (2001-2006) years. PBs and NSe ratings: bold = “unsatisfactory”.  7 
 

St
at

is
tic

s Monthly statistics for water quality calibration(validation) 

Upper 
Thames Black Sydenham Clinton Lower 

Thames Rouge 

 R2 0.54(0.63) 0.54(0.59) 0.75(0.68) 0.64(0.55) 0.62(0.75) 0.73(0.42) 
TP NSe 0.48(0.59) 0.29(0.25) 0.73(0.62) 0.64(0.54) 0.59(0.70) 0.71(0.10) 
 PBs 22.6(9.7) -25.6(-29.1) 5.9(6.3) 5.6(4.8) 18.0(9.6) -5.0(-4.8) 
 R2 0.44(0.59) 0.48(0.50) 0.64(0.57) 0.57(0.51) 0.55(0.65) 0.71(0.49) 
DRP NSe 0.42(0.52) 0.26(0.21) 0.53(0.52) 0.51(0.46) 0.52(0.58) 0.70(0.05) 
 PBs 27.8(12.1) -28.7(-35.2) -6.3(-8.2) 9.6(7.8) 21.5(10.9) 25.1(14.8) 
 R2 0.61(0.65) 0.52(0.55) 0.72(0.65) 0.55(0.54) 0.59(0.66) 0.64(0.53) 
TN NSe 0.54(0.57) 0.27(0.32) 0.70(0.61) 0.54(0.52) 0.57(0.62) 0.61(0.40) 
 PBs 7.8(13.9) 36.4(42.9) 17.9(23.4) -15.8(-14.6) -8.0(8.6) -5.2(-11.4) 
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 R2 0.55(0.52) 0.49(0.47) 0.56(0.52) 0.48(0.48) 0.58(0.66) 0.63(0.42) 
NO3 NSe 0.53(0.49) 0.25(0.27) 0.54(0.47) 0.44(0.42) 0.53(0.55) 0.44(0.21) 
 PBs 15.6(14.2) -24.7(-31.1) 5.9(6.3) -27.3(-23.4) -3.0(13.6) -15.1(-24.8) 
 R2 0.66(0.77) 0.61(0.62) 0.73(0.67) 0.57(0.63) 0.67(0.70) 0.61(0.68) 
TSS NSe 0.59(0.62) 0.49(0.52) 0.57(0.55) 0.47(0.57) 0.60(0.65) 0.58(0.60) 
 PBs -7.5(-2.9) -15.6(-9.9) 14.3(11.6) -16.5(-12.4) -12.0(-7.9) -14.0(-18.4) 
Note: TP = total phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NO3 = nitrate, 1 
TSS = total suspended sediment, R2 = coefficient of determination, NSe = Nash-Sutcliffe efficiency, PBs 2 
= percent bias) 3 

Similar to flow, some water quality parameters vary considerably across sub-watersheds 4 

(Table S4). For example, values of initial nitrate concentration in the soil layer (SOL_NO3) were 5 

set to 100 mg N/kg-soil for UT and SY, whereas values for CL and DT were 25 and 0 mg N/kg-6 

soil, respectively, perhaps reflecting differences in soil fertility. The rate constant for in-stream 7 

mineralization of organic phosphorus to dissolved phosphorus (BC4) was higher for Canadian 8 

rivers (0.28 day-1, 0.25 day-1 and 0.16 day-1 for SR, UTR and LTR, respectively) than for US 9 

rivers (0.018 day-1 for all BR, CR, RR), suggesting potentially higher concentrations of DRP in 10 

Canadian streams. There are also distinct differences in parameter values between UT and LT 11 

sub-watersheds. Almost all nutrient parameter values were higher for UT than LT, implying 12 

higher initial soil nutrient content and increased nutrient yields in the UT compared to LT. 13 

Nutrient load assessments 14 

Because phosphorus is the primary driver of interest in Lake Erie (Scavia et al., 2014; 15 

2016), we focus primarily on phosphorus loading.  16 

Annual average loads. The DT and the Thames (UT and LT) sub-watershed loads were similar 17 

and together contribute >60% of the TP and >70% of the DRP loads on an average annual basis 18 

(Table 6). However, about 90% of TP and DRP load from the DT sub-watershed came from 19 

point sources, mainly one waste water treatment plant, whereas about 90% of the load from the 20 

Thames comes from agriculture.  Despite being mainly urban, the CL sub-watershed load came 21 

primarily from non-point source runoff, with combined urban and agricultural non-point sources 22 

accounting for 83% and 68% of Clinton’s TP and DRP loads, respectively. Moreover, urban 23 

non-point source accounts for about 68% and 75% of CL’s total non-point source TP and DRP 24 

loads, respectively. Phosphorus loads from the SY, the most agriculturally intense sub-25 

watershed, accounted for 13% of the overall watershed’s TP and DRP loads. Among the six sub-26 

watersheds, the SC delivered the lowest loads (10% and 5% of TP and DRP, respectively).  The 27 
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smaller sub-watersheds (Essex and Lake St. Clair; Figure 1) contributed 4.4% and 0.8% of TP, 1 

and 2.5% and 0.5% of DRP loads, respectively. Even though the Essex region sub-watershed 2 

area was about twice that of the Lake St. Clair sub-watershed, it delivered about five times the 3 

phosphorus load due to extensive agriculture and densely tiled soils.  4 

 5 

Table 6: Average annual total phosphorus (TP) and dissolved reactive phosphorus (DRP) loads 6 
in MTA (metric ton per annum) from both point sources (PS) and non-point sources (NPS) for 7 
each sub-watershed 8 

HUC8/Tertiary 
watershed name 

Total PS Total NPS Total Load Drainage 
Area 
(km2) TP DRP TP DRP TP DRP 

St. Clair 28 15 150 21 177 36 3025 
Clinton 33 18 158 39 191 57 1969 
Detroit 492 257 55 30 547 287 1594 

Lake St. Clair 5 3 9 1 14 4 575 
U.S. Total 558 293 372 91 929 384 7163 
Sydenham 26 12 201 83 227 95 3508 

Thames 51 24 472 224 523 248 5827 
Essex 6 3 71 16 77 19 1098 

Canada Total 83 39 744 323 827 362 10433 
Watershed Total* 641 332 1116 414 1756 746 17596 

*This does not include Lake St. Clair and other small unaccounted areas along St. Clair and Detroit connecting 9 
channels 10 

 11 

DRP represented 42% of the TP load overall; however, it was 52% of the point sources 12 

and 37% of the non-point source TP load. While this variation in the DRP/TP ratio did not seem 13 

to be correlated with the composition of LULC, there were clear differences among different 14 

sources.  The DRP fraction from US non-point sources was much lower than from Canadian 15 

non-point sources, likely due to extensive tile drainage in the Canadian portion. In contrast, US 16 

point sources had higher DRP fractions. 17 

Our annual average TP load estimates were similar to the WRTDS-based averages 18 

reported by Scavia et al. (2019) because our model was calibrated to WRTDS estimates (Figure 19 

8). Our estimates were also similar to Maccoux et al. (2016) for the CR and BR, somewhat 20 

higher for the SR and TR, but considerably lower for the RR. Maccoux et al. (2016) and we used 21 
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the same water quality monitoring station for the Rouge River (Figure 1), but Maccoux et al. 1 

considered the drainage area for the station to be 565 km2 whereas the actual drainage area for 2 

the station was 1,200 km2 (USGS, 3 

https://waterdata.usgs.gov/nwis/nwismap/?site_no=04168550&agency_cd=USGS). Hence 4 

Maccoux et al.’s TP estimations for RR were overestimated because they overestimated 5 

unmonitored loads. Our annual average DRP load estimates showed similar discrepancies with 6 

Maccoux et al. (2016).  Our estimate was much lower for the RR and much higher for the TR 7 

(Figure 11). Other discrepancies among the three studies could be due to the lack of more 8 

frequent water quality sample data, inherent differences in structure and assumptions of different 9 

estimation techniques, and span of years considered for the studies.  For example, Maccoux et al. 10 

(2016) estimates for 2003-2013 used the Stratified Beale’s Ratio Estimator (Beale, 1962; Dolan 11 

et al., 1981), Scavia et al (2019) estimates for 1998-2016 used WRTDS, and our estimates for 12 

2001-2015 used SWAT.  13 

 14 

 15 

Figure 8: Comparisons of average annual phosphorus load estimations of total phosphorus (TP, 16 
Top), and dissolved reactive phosphorus (DRP, bottom), for each major sub-watershed. The 17 

https://waterdata.usgs.gov/nwis/nwismap/?site_no=04168550&agency_cd=USGS
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Detroit sub-watershed loads in this figure do not include the GLWA’s (Great Lakes Water 1 
Authority) waste water treatment point source loads. 2 

 3 

 In our analysis, annual TP loads increased slightly for all but CR between 2001 and 2009 4 

and then decreased through 2015, with the trends more obvious for rivers in the agriculture 5 

dominated areas: SR, TR, and BR (Figure S3). On average between 2001 and 2009, TP increased 6 

by 24.7 MTA, 14.8 MTA, 4.1 MTA, and 1.6 MTA for TR, SR, Black, and RR, respectively. The 7 

decreases in TP between 2010 and 2015 were of 42.2 MTA, 23.7 MTA, 8.9 MTA, and 4.0 MTA, 8 

respectively.  DRP followed similar trends, especially for the three rivers in agricultural sub-9 

watersheds, but to a lesser degree than TP, with DRP increases of 8.6 MTA, 4.4 MTA, 1.1 MTA 10 

and 0.8 MTA, and decreases of 20.0 MTA, 9.7 MTA, 2.5 MTA, and 1.1 MTA for the same time 11 

intervals and river orders. Similar trends have been reported for the Maumee River (Baker et al. 12 

2014), another major P contributor to Lake Erie.  In most cases, these trends were reflecting 13 

changes in flow (Figure S3) but flow alone could not explain the trend for the TR and SR where 14 

flow was relatively constant between 2001 and 2005. It appears that, in those cases, agricultural 15 

practices that provide access to more nutrient (e.g., high fertilizer applications) and facilitate 16 

nutrient movement into streams (e.g., tile drainage systems) are also responsible for these trends. 17 

Spatial distribution of yields - Sub-watershed scale. Examining sub-watershed and HRU 18 

yields provide information potentially useful for targeting management actions to the highest 19 

source areas.  While the average annual TP loads from the DT and Thames sub-watersheds were 20 

similar (Table 6), TP yields (3.43 kg /ha and 0.90 kg /ha, respectively) and DRP yields (1.80 kg 21 

/ha and 0.43 kg /ha, respectively) differ considerably due to the difference in drainage areas. In 22 

addition, the Thames delivered much more phosphorus from non-point sources (0.81 kg TP/ha 23 

and 0.38 kg DRP/ha) than the DT sub-watershed (0.35 kg TP/ha and 0.19 kg DRP/ha) (Figure 9). 24 

The Thames and CL sub-watersheds had similar overall TP yields; however, DRP yield was 25 

higher for the Thames. The SY and SC sub-watersheds had comparable TP yields but the SY 26 

produces much higher DRP per hectare. Overall, the TP yield from the US was about 60% higher 27 

than that from Canada. However, Canadian non-point source TP and DRP yields were 40% and 28 

140% higher than the US, and the US point source yields were 9 times and 10 times higher than 29 

Canada for TP and DRP, respectively.  30 
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 1 

 2 
Figure 9: Average non-point (left) and point source (right) total phosphorus (TP) and dissolved 3 
reactive phosphorus (DRP) yields at the outlet of each sub-watershed (dashed horizontal line 4 
shows watershed average values).  5 

 6 

These sub-watershed-specific yields of total, point, and non-point sources (Figure 9) can 7 

be useful for developing load reduction strategies. For example, while the overall TP yield from 8 

DT sub-watershed was about four times that of Thames; most of the yield from the DT sub-9 

watershed was from point sources. Comparing non-point source yields, on the other hand, 10 

showed that the Thames sub-watershed yield was about twice that of the DT. Thus, in exploring 11 

management options at this scale, more attention should be placed on point sources in the DT 12 

sub-watershed and non-point source for agricultural areas of Thames sub-watershed. 13 

Spatial distribution of non-point source yields – sub-basin and HRU scales. While 14 

evaluating yields at the sub-watershed scale was useful for higher-level strategies, assessments at 15 

sub-basin (24 km2) and HRU (field) scales enabled the potential targeting of management 16 

practices. Average HRU-level TP yields were 1.38, 1.10, 0.78, 0.53, 0.96, and 0.63 kg/ha for UT, 17 

LT, SY, DT, CL and SC sub-watersheds respectively.  Average DRP yields are 0.69, 0.50, 0.33, 18 

0.36, 0.32, and 0.12 kg/ha, respectively. The median HRU-level yields for TP and DRP were 19 

lower than the average values (Figure 10). This indicated that regional average values were 20 
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skewed by very high yielding areas across the watershed which in turn implied the presence of a 1 

good opportunity to focus management practices on certain areas to reduce the majority of 2 

nutrient loading from the watershed. 3 

 4 

 5 

Figure 10: Distributions of HRU-level non-point source total phosphorus (TP) and dissolved 6 
reactive phosphorus (DRP) yields for each sub-watershed. Dots indicate average yield values. 7 

 8 

Spatial patterns of non-point P yields at the HRU (field) and subbasin levels (Figure 11) 9 

provided further insight into potential areas of focus for non-point source reduction. High non-10 

point source DRP yields spread relatively evenly across the Canadian watershed; whereas some 11 

of the highest TP yields were found in the upper parts of SY and Thames sub-watersheds. DRP 12 

yields from the US sub-watersheds were distinctly lower than the Canadian counterparts; 13 

however, certain non-agricultural areas in the US (lower parts of SC, upper parts of CL and some 14 

places in Detroit sub-watershed) appeared to have high yields as well. The higher DRP yields 15 
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from Canadian sub-watersheds could be attributed to higher tile drainage density, higher 1 

proportion of cropland, and higher fertilizer application rates. For example, inorganic P 2 

application rates ranged from 22.8 to 44.8 kg/ha, 7.8 to 24.4 kg/ha, and 7.4 to 13.7 kg/ha for 3 

corn, winter wheat and soybeans, respectively, in Canada.  These values were 5.9 to 10.9 kg/ha, 4 

5.7 to 10.1 kg/ha, and 4.8 to 7.8 kg/ha in the US. Similarly, manure application rates were higher 5 

in Canadian agricultural areas (see “Input Characterization” section). The Canadian tile drainage 6 

system was also about twice as dense as in the US (see “Management data layers” section). As a 7 

result, Canadian portions of the watershed had higher sources of DRP (inorganic fertilizer or 8 

manure) and a system that facilitates its movement (denser drainage tile system). 9 

 10 

 11 
Figure 11: a) HRU-level (top) and subbasin-level (bottom) distributions of non-point source total 12 
phosphorus (TP, left) and dissolved reactive phosphorus (DRP, right) yields. 13 

 14 
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The distribution of P yields suggested that US agricultural areas had relatively low TP 1 

and DRP yields. For example, while the northern part of the CL sub-watershed was agricultural, 2 

the higher P yields from that sub-watershed were actually from non-agricultural areas in the 3 

central and west portions of the sub-watershed. Similarly, yields from the agricultural areas in 4 

the northern part of the SC sub-watershed were smaller than those from the non-agricultural 5 

areas.  Most of the high phosphorus yielding areas in CL, for example, were urban areas located 6 

in a relatively higher slope region of the sub-watershed. Moreover, the major point source 7 

contribution of the watershed came from the DT sub-watershed (Table 6). These underscored the 8 

need to focus on Canadian agricultural runoff reduction strategies and both US point source 9 

management and urban runoff reduction strategies. 10 

   11 
 12 
 13 
 14 

CONCLUSION  15 

We integrated and harmonized US and Canadian datasets, including crop rotations, 16 

fertilizer/manure applications, tillage practices, and tile drainage systems; structured a SWAT 17 

model at finer resolution (field-scale) than ever done before for a 19,000 km2 watershed; and 18 

calibrated and validated it at daily, monthly, and yearly time scales at six locations. While some 19 

input data (e.g., crop rotations) were constructed from a 30mx30m grid cell data, others (e.g., 20 

fertilizer application, tillage practice, manure generated, etc.) were available at county or 21 

provincial level. Hence, a great deal effort was invested in allocating model inputs from the 22 

lower spatial resolution to the field scale. Such distribution of model inputs not only improved 23 

model estimates at stream mouths but also provided more confidence in assessing flow and 24 

nutrient estimates at field level. 25 

 In most cases, a very good fit to flow measurements and good fit to water quality load 26 

estimates were achieved using manual and automatic calibration techniques at monthly time 27 

scales. It was evident from the calibration and validation processes that allowing some key 28 

parameters to vary across sub-watersheds improved model performance and that the variations 29 

were consistent with different sub-watershed characteristics.  30 

Annual phosphorus loads increased between 2001 and 2009 and decreased afterwards, 31 

with the trend strongest in agricultural areas. Phosphorus yields were highest in Canadian 32 
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agricultural areas and the US watershed was dominated by point sources, primarily from Great 1 

Lakes Water Authority treatment facility (Table 6 and Figure 8). Field-scale analysis used to 2 

identify areas within the Canadian agricultural and US urban landscapes with relatively high P 3 

yield from non-point sources point to where agricultural and urban management practices should 4 

be focused.   5 

The main limitations of this study are the lack of some input data at the modeled scale 6 

and the relatively low number of water quality observations for calibration and validation. These 7 

limitations increased uncertainties in water quality calibration and validation results, and outputs 8 

at the field scale. More spatially explicit input data for nutrient inputs (fertilizer and manure 9 

application rates, soil nutrient content, etc.), agricultural practices (tillage, tile drainage, cover 10 

crop, filter strip in agricultural fields), and water quality observations would increase confidence 11 

of representations of nutrient and sediment estimates at both the field scale and stream mouths. 12 

SUPPORTING INFORMATION 13 

Additional supporting information may be found online under the Supporting Information 14 

tab for this article: Tables and Figures showing detail model input characterizations, parameter 15 

estimations and result evaluations.  16 
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Supplementary Information 

Table S1: Estimated nitrogen and phosphorus mineral fertilizer application rates in the watershed (C=Corn, S=Soybeans, W=Winter wheat) 

Fertilizer 
Type Country County 

Mineral fertilize application rates for crops in each rotation per county (kg/ha) 

Corn Soybeans Winter Wheat 
CC CS SC CSW SWC WCS CS SC SS CSW SSW SW SWC WCS CSW SSW SW SWC WCS 

M
in

er
al

 n
itr

og
en

 a
pp

lic
at

io
n 

ra
te

 (k
g/

ha
) 

U
SA

 

Macomb 107.8 88.2 90.5 90.3 95.0 92.1 9.8 10.1 10.0 10.0 9.5 9.8 10.6 10.2 85.3 80.8 83.1 89.7 87.0 
St. Clair 95.5 84.0 88.2 90.8 85.4 86.1 9.9 10.4 10.9 10.7 9.6 10.6 10.0 10.1 69.4 62.2 68.7 65.3 65.8 
Lapeer 112.7 92.8 92.8 92.2 92.3 92.5 14.6 14.6 14.6 14.6 − 14.7 14.6 14.6 68.0 − 68.6 68.0 68.2 
Oakland 98.0 83.3 83.3 83.3 82.5 82.9 9.8 9.8   9.8 − − 9.7 9.8 63.7 − − 63.1 63.4 
Sanilac 125.9 106.3 107.4 108.5 109.2 107.7 15.2 15.3 15.3 15.5 15.6 16.4 15.6 15.4 72.3 72.8 76.3 72.8 71.8 
Washtenaw − 122.5 121.8 122.5 122.5 122.5 29.4 29.2 29.3 29.4 − − 29.4 29.4 93.1 − − 93.1 93.1 
Wayne − − 121.3 122.5 118.8 122.5   24.3 24.5 24.5 − − 23.8 24.5 93.1 − − 90.3 93.1 

C
an

ad
a 

Kent 156.5 138.3 134.4 134.0 132.0 133.9 4.1 4.0 3.9 4.0 3.9 4.0 3.9 4.0 84.4 82.3 84.5 83.1 84.3 
Elgin 173.8 146.7 145.8 142.5 148.4 147.2 4.5 4.5 4.9 4.4 3.8 4.9 4.6 4.5 87.7 76.0 97.6 91.3 90.6 
Essex 154.3 128.3 130.9 128.4 132.8 131.5 3.8 3.9 3.8 3.8 4.0 3.9 3.9 3.9 80.9 85.0 82.9 83.6 82.8 
Huron 141.1 127.4 127.4 127.4 127.4 127.4 3.6 3.6 3.6 3.6 − − 3.6 3.6 77.4 − − 77.4 77.4 
Lambton 158.9 134.3 143.1 155.8 154.1 150.9 3.7 3.9 4.1 4.3 4.0 4.2 4.3 4.2 91.3 85.8 88.5 90.3 88.5 
Middlesex 168.1 158.0 148.6 147.4 144.6 146.9 4.5 4.2 4.1 4.2 3.8 4.4 4.1 4.2 89.5 80.8 93.5 87.8 89.2 
Oxford 151.5 132.7 134.7 135.8 133.5 136.3 3.8 3.8 3.8 3.9 − 3.7 3.8 3.9 82.5 − 79.1 81.0 82.7 
Perth 140.5 128.1 127.8 128.1 128.1 128.1 3.7 3.7 3.7 3.7 3.7 3.6 3.7 3.7 82.3 82.8 81.9 82.4 82.4 

M
in

er
al

 p
ho

sp
ho

ru
s a

pp
lic

at
io

n 
ra

te
 (k

g/
ha

) 

U
SA

 

Macomb 7.8 6.9 7.0 7.0 7.4 7.2 5.9 6.0 6.0 6.0 5.7 5.9 6.3 6.1 7.0 6.7 6.8 7.4 7.2 
St. Clair 7.6 5.9 6.2 6.4 6.0 6.1 4.9 5.2 5.5 5.3 4.8 5.3 5.0 5.1 6.4 5.7 6.3 6.0 6.1 
Lapeer 7.8 6.8 6.8 6.8 6.8 6.8 5.9 5.9 5.9 5.8 − 5.9 5.8 5.8 7.8 − 7.8 7.8 7.8 
Oakland 8.8 7.8 7.8 7.8 7.8 7.8 5.9 5.9   5.9 − − 5.8 5.9 7.8 − − 7.8 7.8 
Sanilac 10.1 8.1 8.2 8.3 8.3 8.2 6.1 6.1 6.1 6.2 6.2 6.5 6.2 6.2 10.3 10.4 10.9 10.4 10.3 
Washtenaw − 9.8 9.7 9.8 9.8 9.8 7.8 7.8 7.8 7.8 − − 7.8 7.8 9.8 − − 9.8 9.8 
Wayne − − 7.8 7.8 7.6 7.8   6.8 6.9 6.9 − − 6.7 6.9 7.8 − − 7.6 7.8 

C
an

ad
a 

Kent 36.5 25.6 24.9 24.8 24.4 24.8 10.2 10.0 9.9 9.9 9.7 9.9 9.8 9.9 19.9 19.4 19.9 19.6 19.8 
Elgin 42.0 28.2 28.0 27.4 28.5 28.3 11.3 11.2 12.2 11.0 9.5 12.2 11.4 11.3 21.9 19.0 24.4 22.8 22.6 
Essex 33.9 23.8 24.2 23.8 24.6 24.4 7.6 7.8 7.6 7.6 8.0 7.8 7.9 7.8 17.1 18.0 7.8 17.7 17.5 
Huron 31.9 22.8 22.8 22.8 22.8 22.8 13.7 13.7 13.7 13.7 − − 13.7 13.7 20.0 − − 20.0 20.0 
Lambton 34.8 23.2 24.7 26.9 26.6 26.0 7.4 7.9 8.1 8.6 8.1 8.3 8.5 8.3 21.5 20.2 20.8 21.3 20.8 
Middlesex 44.8 33.9 31.9 31.6 31.0 31.5 11.3 10.6 10.3 10.5 9.5 11.0 10.3 10.5 21.1 19.0 22.0 20.7 21.0 
Oxford 37.9 28.4 28.9 29.1 28.6 29.2 9.5 9.6 9.6 9.7 − 9.3 9.5 9.7 24.3 − 23.3 23.8 24.3 
Perth 31.7 24.7 24.6 24.7 24.7 24.7 9.1 9.1 9.2 9.1 9.2 9.1 9.2 9.2 18.3 18.4 18.2 18.3 18.3 

 

 

 



Table S2. Tributary name, drainage area of calibration locations, flow and water quality gauging stations, and number of point source (PS) facilities 
and combined sewer overflow (CSO) outfalls.  

River 
Name 

Drainage Area at 
calibration location 

(km2) 

As % of 
entire 

watershed* 

Number of  
PS Facilities / 
CSO Outfalls 

Flow gaging Station Water quality station 

Black  1843  10.3 18 / 9 USGS-04159492, USGS-04159900 USEPA-740267 and USGS-04160055 (Same location), 
USGS-04160075 

Clinton  1916 10.7 8 / 2 USGS-04165500 USEPA-500233 and USGS-04165553 (Same location),  
USGS-04165500 

Sydenham  2959 16.6 11 / - HYDAT-02GG009, HYDAT-02GG013, 
HYDAT-02GG003 

ECCC-ON02GG1000, PWQMN-04002701602, 
PWQMN-04002701702 

Thames  4989 27.9 29 / - HYDAT-02GE003, HYDAT-02GE007 ECCC-ON02GE1000, PWQMN-04001305802, 
PWQMN-04001308202, PWQMN-04001300782 

Rouge  1230 6.9 4 / 79 USGS-04166500, USGS-04167000, USGS-
04167150, USGS-04168000, USGS-04168400 EPA-820070 and USGS-04168550 (Same location) 

*This excludes the area of Lake St. Clair 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table S3: Flow parameters altered during calibration. CNII=Runoff curve number at moisture condition II, OV_N=Manning’s “n” value for overland flow, 
HRU_SLP=Average slope of HRU, SLSUBBSN=Average slope length, SOL_AWC=Available water capacity of soil, ESCO=Soil evaporation compensation 
factor, GW_DELAY=Groundwater delay time, GWQMN=Threshold depth of water in aquifer for return flow to occur, GW_REVAP=Groundwater evap 
coefficient, Alpha_Bf=Baseflow alpha factor, CH_W2=Average width of main channel at top of bank, CH_S2=Average slope of main channel along the channel 
length, CH_D=Depth of main channel from top of bank to bottom, SFTMP=Snowfall temperature, SMTMP=Snow melt base temperature, SMFMX=Melt factor of 
snow on June 21, SMFMN=melt factor of snow on December 21, TIMP=Snow pack temperature lag factor, SNOCOVMX=Minimum snow water content that 
corresponds to 100% snow cover, SNO50COV=Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover, SURLAG=Surface 
runoff lag coefficient (relative = default value is multiplied by 1+ fitted values, replace= default value is replaced by fitted values) 

Parameter Unit Default value Change 
type Scale 

Fitted values 
Upper 

Thames Black Sydenham Clinton 
Lower 

Thames Rouge 
CNII - varies (35 - 94) relative hru 0.100 -0.050 0.110 0.085 0.040 -0.010 
OV_N - varies (0.03 - 0.90) relative hru 3.00 3.00 1.55 1.50 3.00 2.70 
HRU_SLP m/m varies (0-0.327) relative hru -0.70 -0.50 -0.47 -0.60 -0.70 -0.60 
SLSUBBSN m  varies (9.15 - 121.95) relative hru 0.70 -0.40 0.48 0.60 0.70 0.20 
SOL_AWC mm H2O/mm soil varies (0.214-586.6) relative hru 0.0 0.1 -0.3 -0.5 0.1 -0.2 
ESCO - 0.95 replace hru 0.30 0.90 0.51 0.80 0.90 0.50 
GW_DELAY days 31 replace hru 31 31 25 16 31 30 
GWQMN mm H2O  1000 replace hru 50 400 100 0 20 350 
GW_REVAP - 0.02 replace hru 0.05 0.10 0.04 0.02 0.02 0.10 
ALPHA_BF 1/days 0.048 replace hru 0.10 0.50 0.06 0.60 0.10 0.20 
CH_W2 m varies (0.04-476.9) relative subbasin 0.0 0.0 0.0 0.0 0.0 0.5 
CH_S2 m/m varies (0.00-0.083) relative subbasin 0.0 0.0 0.0 -0.6 0.0 -0.7 
CH_D m varies (0.01 - 6.7) relative subbasin 0.0 0.0 0.0 1.2 0.0 -0.2 
SFTMP oC 1 replace watershed -0.1 
SMTMP oC 0.5 replace watershed -0.1 
SMFMX mmH2O/oC-day 4.5 replace watershed 4.9 
SMFMN mmH2O/oC-day 4.5 replace watershed 3.7 
TIMP - 1 replace watershed 0.28 
SNOCOVMX mm H2O 1 replace watershed 50.7 
SNO50COV - 0.5 replace watershed 0.41 
SURLAG - 4 replace watershed 0.27 

 

 
 
 
 
 
 
 



Table S4: Water quality parameters altered during calibration, ANION_EXCL=Fraction of porosity from which anions are excluded, SOL_NO3= Initial 
nitrate concentration in the soil layer, SOL_ORGN= Initial organic nitrogen concentration in the soil layer, SHALLST_N= Initial concentration of nitrate in 
shallow aquifer, LAT_ORGN= Organic nitrogen in base flow, ERORGN= Organic nitrogen enrichment ratio for loading with sediment, SOL_SOLP = Initial 
soluble phosphorus concentration in the soil layer, SOL_ORGP=Initial organic phosphorus concentration in the soil layer, GWSOLP=Concentration of soluble 
phosphorus in groundwater contribution of streamflow, LAT_ORGP=Organic phosphorus in base flow, ERORGP=Phosphorus enrichment ratio for loading with 
sediment, BC4=Rate constant for decay of organic phosphorus to dissolved, NPERCO=Nitrate percolation coefficient, PHOSKD=Phosphorus soil partitioning 
coefficient, P_UPDIS=Phosphorus uptake distribution parameter, N_UPDIS=Nitrogen uptake distribution parameter, CDN=Denitrification exponential rate 
coefficient, PSP=Phosphorus availability index, BIOMIX=Biological mixing coefficient (relative = default value is multiplied by 1+ fitted values, replace= default 
value is replaced by fitted values). 

Parameter Unit Default 
value 

Change 
type Scale 

Fitted values 
Upper 

Thames Black Sydenham Clinton 
Lower 

Thames Rouge 
ANION_EXCL  0.5 replace hru 0.95 0.05 0.15 0.53 0.20 0.06 
SOL_NO3 mg N/kg soil 0 replace hru 100 0 100 25 40 0 
SOL_ORGN mg N/kg soil 0 replace hru 5 10 10 5 1 1 
SHALLST_N mg N/L 0 replace hru 200 0 170 120 100 0 
LAT_ORGN mg/L 0 replace hru 10 10 15 5 1 1 
ERORGN  0 replace hru 0.90 1.30 0.80 0.92 0.25 0.45 
SOL_SOLP mg P/kg soil 5 replace hru 0.67 0.05 0.10 0.10 0.20 0.15 
SOL_ORGP mg P/kg soil 0 replace hru 0.25 0.35 0.30 0.42 0.25 0.30 
GWSOLP mg P/L 0 replace hru 0.67 0.05 0.10 0.05 0.15 0.10 
LAT_ORGP mg/L 0 replace hru 0.25 0.35 0.30 0.45 0.20 0.30 
ERORGP  0 replace hru 0.50 0.65 0.55 1.00 0.35 0.40 
BC4 1/day 0.35 relative subbasin -0.30 -0.95 -0.20 -0.95 -0.55 -0.95 
NPERCO  0.2 replace watershed 0.25 
PHOSKD m3/Mg 175 replace watershed 200 
P_UPDIS  20 replace watershed 100 
N_UPDIS  20 replace watershed 40 
CDN  0.5 replace watershed 1.4 
PSP  0.4 replace watershed 0.01 
BIOMIX  0.2 replace hru 0.01 



Table S5: Daily and annual flow calibration and validation performance statistics (R2 = 
coefficient of determination, NSe = Nash-Sutcliffe efficiency, PBs = percent bias) 

 

Table S6: Monthly flow statistics for each sub-watershed if uniform alteration of parameters 
across the watershed were used (red=significant, orange=moderate, and green=slight or no 
changes. grey=final calibration/validation statistics, R2 = coefficient of determination, NSe = 
Nash-Sutcliffe efficiency, PBs = percent bias) 

 

St
at
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s Flow calibration/validation statistics values 

Upper 
Thames Black Sydenham Clinton Lower 

Thames Rouge 

 F
lo

w
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ar
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et
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d 
fr

om
 

Upper 
Thames 

R2 0.84(0.93) 0.69(0.71) 0.84(0.85) 0.52(0.59) 0.86(0.92) 0.67(0.74) 
NSe 0.84(0.93) 0.64(0.54) 0.82(0.83) 0.20(0.29) 0.86(0.91) 0.66(0.67) 

PBs 0.1(3.2) -20(-35.4) -13.9(-6.9) -37.0(-34.5) -5.4(2.3) -6.1(-
14.1) 

Black 
R2 0.73(0.62) 0.72(0.76) 0.81(0.87) 0.57(0.64) 0.86(0.92) 0.64(0.72) 

NSe 0.72(0.61) 0.72(0.76) 0.81(0.87) 0.47(0.55) 0.86(0.91) 0.60(0.72) 
PBs 9.5(13.1) 9.2(-2.9) 5.2(10.2) -18.7(-18.8) -7.1(-1.4) 5.7(-4.1) 

Sydenham 
R2 0.80(0.86) 0.68(0.71) 0.85(0.87) 0.54(0.66 0.85(0.89) 0.68(0.76) 

NSe 0.78(0.81) 0.68(0.69) 0.85(0.86) 0.41(0.57) 0.85(0.87) 0.62(0.75) 
PBs 7.6(12.7) 1.5(-10.3) -1.2(8.4) -23.0(-19.2) 3.2(12.7) 7.7(0.2) 

Clinton 
R2 0.84(0.89) 0.69(0.74) 0.82(0.83) 0.63(0.80) 0.85(0.88) 0.77(0.85) 
NSe 0.81(0.85) 0.62(0.70) 0.80(0.79) 0.53(0.75) 0.84(0.81) 0.46(0.65) 
PBs 12.6(16.5) 28.8(20.5) 10.7(21.5) -2.7(1.9) 10.9(21.4) 24.3(18.0) 

Lower 
Thames 

R2 0.82(0.92) 0.71(0.76) 0.83(0.89) 0.52(0.59) 0.87(0.92) 0.60(0.69) 
NSe 0.81(0.91) 0.70(0.76) 0.83(0.88) 0.42(0.50) 0.87(0.91) 0.55(0.68) 
PBs 7.5(8.0) 12.9(-0.6) -3.3(1.7) -18.1(-18.7) -2.7(5.4) 6.7(-3.3) 

Rouge 
R2 0.85(0.92) 0.74(0.75) 0.84(0.86) 0.59(0.65) 0.88(0.92) 0.71(0.78) 

NSe 0.84(0.92) 0.71(0.62) 0.82(0.85) 0.35(0.44) 0.86(0.92) 0.70(0.75) 
PBs -11.2(-5.2) -16.8(-30.4) -15.1(-5.5) -32.4(-29.1) -9.7(-0.9) -1.1(-8.5) 

Time 
step 

St
at

is
tic

s Performance values for calibration(validation) period 
Upper 

Thames Black Sydenham Clinton Lower 
Thames Rouge 

D
ai

ly
 R2 0.69(0.80) 0.51(0.53) 0.69(0.65) 0.63(0.80) 0.87(0.92) 0.65(0.64) 

NSe 0.68(0.80) 0.43(0.52) 0.66(0.61) 0.53(0.75) 0.87(0.91) 0.64(0.64) 
PBs 0.1(3.2) 9.4(-2.7) -1.2(8.7) -2.7(1.9) -2.7(5.4) -1.2(-8.5) 

A
nn

ua
l R2 0.91(0.97) 0.88(0.78) 0.88(0.89) 0.59(0.92) 0.92(0.94) 0.73(0.94) 

NSe 0.91(0.93) 0.81(0.69) 0.88(0.76) 0.58(0.70) 0.91(0.85) 0.68(0.67) 
PBs 0.1(3.2) 9.4(-2.7) -1.2(8.7) -2.8(1.8) -2.4(5.6) -1.2(-8.5) 



 
Figure S1: Crop rotation distribution in each county with in the watershed (C = Corn, 
S=Soybeans, W=Winter wheat) 

 

Figure S2: Crop rotation distribution in each sub-watershed (C = Corn, S=Soybeans, W=Winter 
wheat) 
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Figure S3: Annual total phosphorus (TP,solid black line), dissolved reactive phosphorus (DRP, 
broken black line) and flow (broken grey line) annual time series for each major sub-watershed. 
Unlabeled black center line indicates general trend (regression) line for TP for 2001-2009 and 
2009-2015. 
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