Addressing Climate Change Vulnerabilities to Transportation Infrastructure

Lessons from Michigan DOT

presented to

Adaptation in the Great Lakes Region Conference

presented by Cambridge Systematics, Inc. Jason Hyde and

Michigan DOT, Niles Annelin

CAMBRIDGE SYSTEMATICS Transportation leadership you can trust.

Michigan's Climate and Transportation

- Over 3,000 Miles of Shoreline 2nd only to Alaska
- Over 100,000 Miles of Roadway
- Over 10,000 Bridges
- 98 Islands
- Over 11,000 Inland Lakes

 At any point in Michigan you are never more than 85 Miles away from one of the Great Lakes

Michigan's Climate and Transportation

- 35% of US/Canada Trade flows through Michigan
- \$520 Billion in Freight is Moved each year on Michigan's Highways, Rail and Water Ports
- Trucking Accounts for 67% of all Freight Tonnage Moved in Michigan

Climate Risks

More Frequent and Intense Rain Events
» Washout of Transportation Infrastructure

Increased Frequency of Freeze Thaw Cycle

Increased and Prolonged Summer Temperatures Extremes
» Both will Deteriorate Roads more Rapidly

• Changes to Maintenance Needs

Climate Risks Winter Melt/Spring Rains - More Flooding

Climate Risks

What to Do

- Continue to Develop Asset Management Databases
- Data will be used to Identify Potential Risks
- Address these Risks through Regular Transportation Program Process

What to Do

- Opportunity to apply for an FHWA Pilot Study to Assess
 Vulnerability to Climate Change
 - » Assess Available Climate Models,
 - » Compare them to Asset Management Data and
 - » Prepare set of Infrastructure at most Risk for Climate Change

What is Climate Change Vulnerability?

Climate change and extreme weather vulnerability in the transportation context a function of a transportation asset or system's **sensitivity** to climate effects, **exposure** to climate effects, and **adaptive capacity**

Objective of Climate Vulnerability Assessments

- Assess vulnerability of transportation infrastructure to climate change
- Develop adaptation strategies and update asset management process to address these vulnerabilities

FHWA Vulnerability Assessment Framework

Asset Inventory

- A meaningful vulnerability assessment requires robust, accurate transportation system data
- Obtaining the best available spatial and attribute data in Geographic Information System (GIS) format a critical first step

FHWA Vulnerability Assessment Framework

Range of Approaches for Defining Criticality

 Approaches for assessing asset criticality can range from simple to complex

 Criticality assessment attempts to define the consequence of asset unavailability

 Used to screen down number of assets for vulnerability assessment

Determining Asset Criticality - Michigan

- Using "desk review" approach
- Incorporating some stakeholder input
- Ranking assets based on "low, medium, high" criticality

FHWA Vulnerability Assessment Framework

16

CALC Michigan Department of Transportation

Climate Stressors: Michigan

Issues of concern:

- Increased erosion from intense precipitation, decreased snow/increased rain
- » Bridge scour
- » Freeze/thaw cycle
- » Great Lakes ice cover and impact on lake effect snow; lake levels
- » Road buckling

Climate Stressors: Michigan

Issue(s) of Concern	Climate Variable for	Operationalized
	Analysis	Climate Variables
Increased erosion and	Extreme precipitation	• Change in 25, 50, and 100-
flooding from intense		year rain events
precipitation		. Change in precipitation as
(particularly extreme		snow vs. rain
precipitation events in a 3-6		5110 W V3. Fair
hour time period)		

Sample of Climate Projections: Michigan

"Worst Case" Scenario: 44 – 77% increase in Average Annual Precipitation

FHWA Vulnerability Assessment Framework

Michigan Vulnerability Example: Flooding

	Major Roadways
Total in County	383 Miles
Number in 100 Year Floodplain	8.5 Miles
% in 100 Year Floodplain	2.2%
Number in 500 Year Floodplain	10 Miles
% in 500 Year Floodplain	2.6%

Final Step: Integrate Findings into Decisionmaking Processes

- Educate staff regarding overall climate risks to the agency's transportation system
- Inform the development of adaptation strategies, such as updated design standards
- Site new assets in areas less vulnerable to climate change

THANK YOU!