What does the term "e-waste" bring to mind?

MICHAEL HARDY PHOTO 01.08.18 11:00 AM

1 / 16 Tires burn in the background as a boy at the world's largest e-dump in Ghana repeatedly smashes a TV into the ground to break it open. FO KAI LÖFFELBEIN

11 / 16 A lot of e-waste ends up in landfills, like this one outside of New Delhi. 👸 KAI LÖFFELBEIN

https://www.smithsonianmag.com/science-nature/burning-truth-behind-e-waste-dump-africa-180957597/ https://www.wired.com/story/international-electronic-waste-photographs/ 10

E-waste recycling *does* look like that...

BUT!

The e-waste cycle: production to disposal

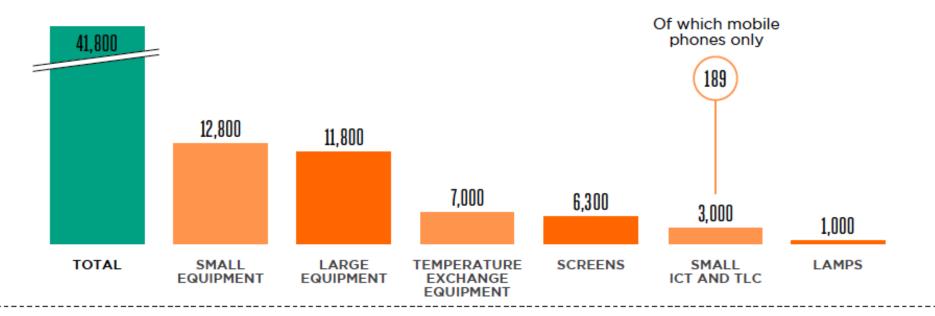
http://e-stewards.org/learn-more/for-consumers/overview/where-does-your-e-waste-go/

Global movement of e-waste

There is currently no system for tracking legal or illegal (under international law) shipments of electronic waste, and therefore, there is no quantitative data on volumes or even all of the true destinations. Some electronic waste is shipped as "working equipment" only to end-up as waste upon arrival. This map indicates information collected through investigations by organizations such as the Basel Action Network, Silicon Valley Toxics Coalition, Toxics Link India, SCOPE (in Pakistan), Greenpeace and others.

http://worldloop.org/e-waste/illegal-flows/

Why are we talking about this *now*?



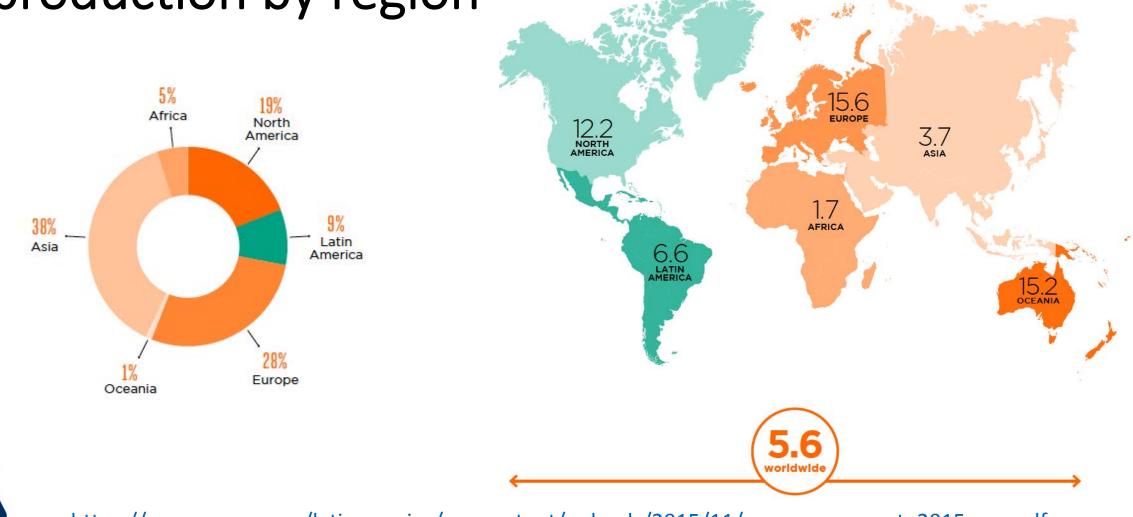
http://www.marketresearchstore.com/news/global-e-waste-management-market-255

Global e-waste generation by equipment type

Table 3

Total e-waste generated worldwide in 2014 in kt

 ⁹ MAGALINI ET. AL, STUDY ON COLLECTION RATES OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (WEEE): POSSIBLE MEASURES TO BE INITIATED BY THE COMMISSION AS REQUIRED BY ARTICLE 7(4), 7(5), 7(6) AND 7(7) OF DIRECTIVE 2012/19/EU ON WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (WEEE), 2014.
¹⁰ WANG, F., ET AL., ENHANCING E-WASTE ESTIMATES: IMPROVING DATA QUALITY BY MULTIVARIATE INPUT-OUTPUT ANALYSIS. WASTE MANAGEMENT 33(11): 2397-2407, 2013.
¹¹ EU WEEE DIRECTIVE (2012/18/EU), WHICH CLUSTERS PRODUCTS ACCORDING TO TREATMENT TECHNOLOGY REQUIREMENTS AND OPERATIONS PRACTICES.



https://www.gsma.com/latinamerica/wp-content/uploads/2015/11/gsma-unu-ewaste2015-eng.pdf

Global e-waste production by region

Table 6

E-waste generated per capita by all world regions

https://www.gsma.com/latinamerica/wp-content/uploads/2015/11/gsma-unu-ewaste2015-eng.pdf

Why recycle e-waste?

Table 5

Recycled material energy savings over virgin materials

Material	Energy savings (%)		
Aluminum	95		
Copper	85		
Iron and steel	74		
Lead	65		
Zinc	60		
Paper	64		
Plastic	>80		

Source: Cui and Forssberg (2003).

Nnorom and Osibanjo, Waste Manag 2008; 28(8); 1472-9

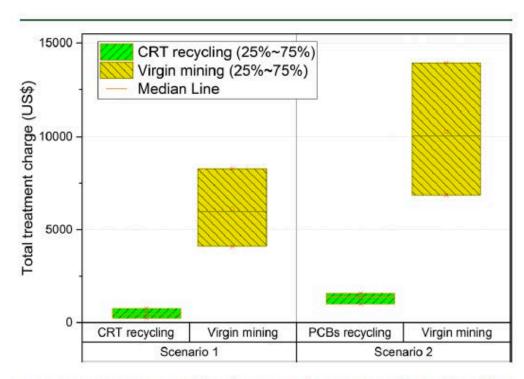


Figure 2. Comparison of total integrated treatment charge for urban mining and virgin mining for same metals yield. Note: Scenario 1 with equivalent yield as CRT recycling, and scenario 2 with equivalent yield as PCBs recycling. Dash area indicates the range of value.

Zeng et al, Environ Sci Tech 2018; in press

Why recycle e-waste carefully?

Table 2

Potential environmental contaminants arising from E-waste disposal or recycling.

BAD!!	Contaminant	Relationship with E-waste	Typical E-waste concentration (mg/kg)*	Annual global emission in E-waste (tons) ^b
	Polybrominated diphenyl ethers (PBDEs) polybrominated biphenyls (PBBs) tetrabromobisphenol-A (TBBPA)	Hame retardants		
	Polychlorinated biphenyls (PCB)	Condensers, transformers	14	280
	Chlorofluorocarbon (CFC)	Cooling units, insulation foam		
	Polycyclic aromatic hydrocarbons (PAHs)	Product of combustion		
	Polyhalogenated aromatic hydrocarbons (PHAHs)	Product of low-temperature combustion		
	Polychlronated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs)	Product of low-temperature combustion of PVCs and other plastics		
	Americium (Am)	Smoke detectors		
	Antimony	Flame retardants, plastics (Ernst et al., (2003))	1700	34,000
	Arsenic (As)	Doping material for Si		222232696
	Barium (Ba)	Getters in cathode ray tubes (CRTs)		
	Beryllium (Be)	Silicon-controlled rectifiers		
	Cadmium (Cd)	Batteries, toners, plastics	180	3600
	Chromium (Cr)	Data tapes and floppy disks	9900	198,000
	Copper (Cu)	Wiring	41,000	820,000
	Gallium (Ga)	Semiconductors		
	Indium (In)	LCD displays		
	Lead (Pb)	Solder (Kang and Schoenung, (2005)), CRTs, batteries	2900	58,000
	Lithium (11)	Batteries		
	Mercury (Hg)	Fluorescent lamps, batteries, switches	0.68	13.6
GOOD!!	Nickel (Ni)	Batteries	10,300	206,000
	Selenium (Se)	Rectifiers		
	Silver (Ag)	Wiring, switches		
	Tin (Sn)	Solder (Kang and Schoenung, (2005)), LCD screens	2400	48,000
	Zinc (Zn)		5100	102,000
	Rare earth elements	CRT screens		

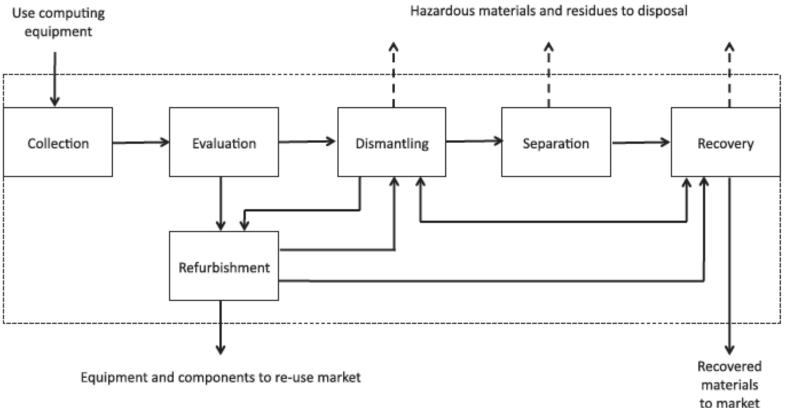
Adapted from (e-waste, 2009).

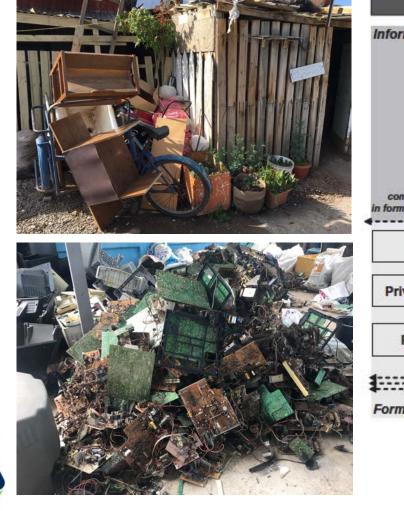
* (Morf et al., 2007).

^b Assuming a global e-waste production of 20 million tonnes per year.

Robinson, Sci Tot Environ, 2009 408, 183-191

What does formal e-waste recycling look like?




Figure 2. Desired flow diagram for ESM of used EEE within a recycling facility. Abbreviations: EEE, electrical and electronic equipment; ESM, environmentally sound management. (Adapted from ref 15.)

Perkins et al, Ann Global Health, 2014 80; 286-295

Images: <u>http://www.electronicstakeback.com/wp-content/uploads/goodrecycler3.jpg</u> http://www.cpmfg.com/material-recovery-facility/e-waste-recycling-equipment/

What does *informal* e-waste recycling look like?

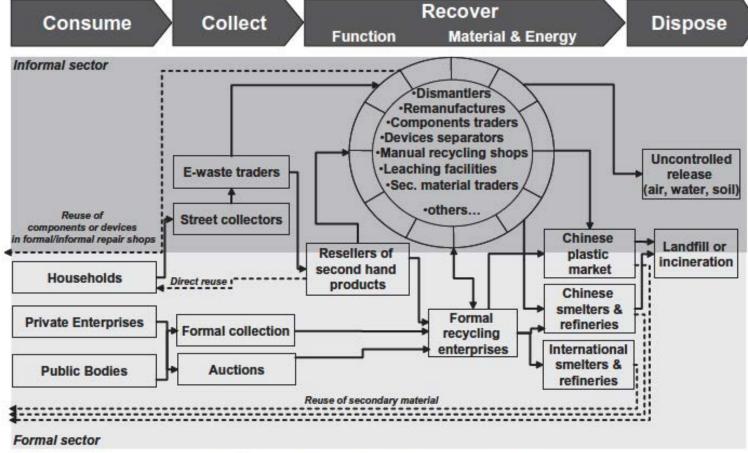


Fig. 2. Flow chart of informal and formal e-waste processes in China.

Chi et al, Waste Manage, 2011 31; 731-742

Informal e-waste recycling: collecting

Informal e-waste recycling: sorting

Informal e-waste recycling: repairing

Informal e-waste recycling: dismantling

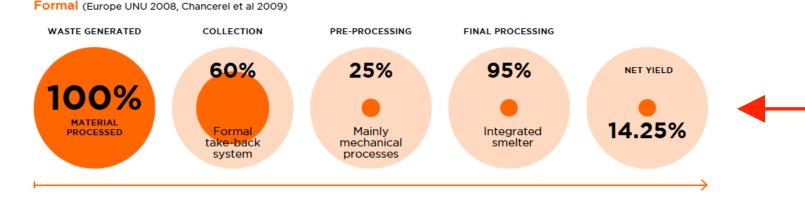
Informal e-waste recycling: dismantling

Informal e-waste recycling: dismantling

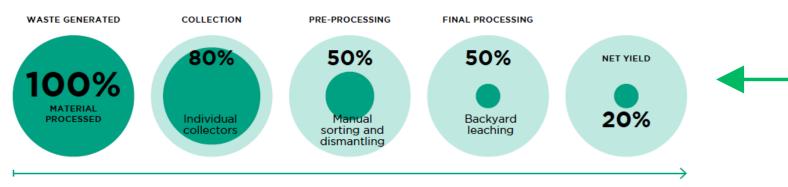
Informal e-waste recycling: burning

Informal e-waste recycling: burning

Informal e-waste recycling: end product



Informal vs. formal e-waste recycling


Figure 3

Impact of recovery effectiveness in individual recycling chain steps and overall recovery performances⁷

Much great processing efficiency but lower net yield due to low collection and pre-processing

Informal (India, Keller 2006)

Much lower final processing efficiency but higher net yield due to high collection and preprocessing

https://www.gsma.com/latinamerica/wp-content/uploads/2015/11/gsma-unu-ewaste2015-eng.pdf

31

Other critical considerations

- Engineering approaches
- Sociotechnical issues
- Sustainability models
- Policy possibilities
- Environmental impacts

Questions?

Rick Neitzel, PhD, CIH, FAIHA
<u>rneitzel@umich.edu</u>
<u>https://umexposureresearch.org/</u>

