Graham Sustainability Institute

Find Products

Search below to access a wide array of products that were generated or supported by the Graham Institute. For more U-M publications related to sustainability, search the U-M Deep Blue database.

Displaying 81 - 90 of 351
Publication Cover
Fact Sheet

Salt marshes and tidal creeks maintain healthy water, protect coastal communities from flooding and erosion, provide nursery and essential habitat for commercial and recreational fisheries, and support recreational activities that are a part of the coastal lifestyle. This project seeks to educate K-12 students on the importance of restoring these ecosystems, using approaches that also meet current science curriculum standards. The Guana Tolomato Matanzas, ACE Basin, North Inlet, North Carolina, and Sapelo Island reserves will create a region-wide student-driven program for teachers that will further the understanding of restoring degraded or lost estuary habitats.

August 2017
Publication Cover
Fact Sheet

Climate change impacts on Alaskan coasts are occurring at a rate that is challenging the ability of resource-dependent businesses to respond and adapt. Climate change-induced threats to Alaskan fishing communities include changing oceanographic conditions of circulation and temperature, ocean acidification, and harmful algal blooms, as well as changing stream temperatures, turbidity, and nutrient conditions. Adequate resilience tools for local fishery-related businesses in Alaska have not yet been designed and implemented, which is a barrier to effective community resilience. These issues were identified in a series of climate resilience workshops the Kachemak Bay National Estuarine Research Reserve hosted for decision-makers in 2016 and 2017.

August 2017
Annual Report/Guide

In the Fifth Annual Report, Collaborative Leadership for Sustainability, key impacts include supporting sustainability projects that have impacted people in 19 countries, 8 states, and 6 Michigan communities. Made possible by The Dow Chemical Company Foundation, the Dow Sustainability Fellows Program at the University of Michigan (U-M) engaged 17 of U-M's 19 schools and colleges this past year.

August 2017
Fact Sheet

A Dow Sustainability Master's Fellows team investigated the feasibility of installing a biodigester on campus to reduce food waste and capture gas to use for energy. This summary is part of the Dow Global Impact Series highlighting innovative field work projects.

Keywords: Biodigester, food waste, compost, energy conservation, engineering, sustainability, University of Michigan Dow Sustainability Fellows Program

July 2017
Report Cover
Paper/Project Report

This is a study of the distinctive characteristics, activities, challenges and opportunities of a specific type of sustainability institute, one that spans the many disciplines of the University and, to do so, reports to upper administration (Provost or Vice President.) Among research universities within the Association of American Universities (AAU), 19 are identified and 18 agreed to participate in this study. Directors were sent a 71-question survey in January 2017 that covered issues of Governance, Research, Education, Engagement, Campus Operations and Best Practices.

May 2017
Fact Sheet

Tidal wetlands are recognized for their important role in carbon sequestration, as well as for their potential to become significant sources of greenhouse gas emissions when converted to other land uses. The substantial quantities of carbon captured and stored by tidal wetlands—termed “blue carbon”—is an ecosystem service of great interest to those developing regional, national, and global climate change adaptation and mitigation strategies, including carbon markets. While carbon stocks data have been collected in several parts of the world to quantify the carbon sequestration potential of tidal wetlands, there is a scarcity of such information in the Pacific Northwest. This project helps to fill this gap by conducting the first-ever comprehensive blue carbon assessment in Pacific Northwest tidal wetlands and generating a user-friendly database of regional blue carbon data. Input from end users will guide the design, scope, outputs, and outcomes of the project.

May 2017
Fact Sheet

The Coos Bay estuary has a diverse set of end users who share a common need: to better understand circulation and sediment transport under current and future conditions. The estuary is one of three Oregon estuaries designated as “deep draft development,” which means that planners must balance industry, restoration, and natural resource goals. The project team’s primary research objectives are to fill data gaps that are critical to addressing their myriad management needs. These needs include characterizing the present-day sediment distribution, monitoring sediment fluxes to the estuary, and modeling how circulation and sediment in the estuary will respond to perturbations due to both natural and human-induced causes—such as dredging or inundation caused by sea level rise.

May 2017
Fact Sheet

As the sixth largest estuary on the west coast, the Coos Bay estuary is one of Oregon’s most important ecological resources, both in its abundance, diversity, and quality and in the economic and cultural value it provides. However, modern management of the estuary and surrounding shorelands is based on the economic and social drivers of the 1970s, when local land use plans were developed. The surrounding community now agrees that current land use regulations need to evolve to reflect today’s economic and social drivers, while proactively addressing environmental changes and protecting natural resources.

May 2017
Fact Sheet

The Jacques Cousteau National Estuarine Research Reserve convened a roundtable of mosquito control agencies to examine the intersection of sea level rise, salt marsh structure, habitat modification and restoration, and nuisance mosquito populations. A chief concern is how climate change and sea level rise may affect marsh habitats, subsequently increasing mosquito production. Also of concern is how past physical alterations meant to reduce mosquito habitat affect the ability of salt marshes to maintain their relative elevation, and, as a result, their long-term resiliency in the face of sea level rise. Recognizing the valuable role that salt marshes play in buffering coastal communities, coastal decision-makers are increasingly advocating for the restoration of salt marshes. While the thin-layer application of dredge spoil is of increasing interest as a way to help marshes keep up with rising sea levels, it could also greatly affect mosquito production.

May 2017
Fact Sheet

Coastal communities are striving to safeguard themselves from increasing storm risks. One approach is to restore and manage natural features, including coastal wetlands such as Piermont Marsh on the Hudson River in New York. Residents believe Piermont Marsh significantly reduced wave and flood debris damage on the abutting Village of Piermont during Hurricane Sandy. Without the marsh, the financial impact of Sandy would likely have been far worse. Marsh managers and village leaders now seek to better understand the marsh’s capacity to buffer against waves, flood, and debris, and the economic values associated with these functions. In partnership with the local community, this project will design and apply state-of-the-art predictive models that will evaluate different approaches to managing the marsh.

April 2017

Pages